Stats 101: Better flight experiences with data (airline delays in New York City)

Nicholas J. Horton (Amherst College) and Ben Baumer (Smith College)

December 7, 2015

Statistics students (and instructors) need experience wrestling with large, messy, complex, challenging data sets, for which there is no obvious goal or specially-curated statistical method. In this example, we consider a case study from a subset of the 180 million record Airline Delays dataset (see http://stat-computing.org/dataexpo/2009) that includes n=336,776 domestic commercial flights originating in New York City area airports (Newark, JFK, and LaGuardia) in 2013. These data are made available as a series of comma separated variable (CSV) files or through Hadley Wickham's nycflights13 package on CRAN and allow students to explore a variety of statistical questions related to flights from NYC airports.

These five separate datasets can easily be merged (see the appendix for a list of the first few observations in each of these tables.) More details and extended examples can be found at http://www.amherst.edu/~nhorton/precursors.

Students can use this dataset to address questions that they find real and relevant. (It is not hard to find motivation for investigating patterns of flight delays. Ask students: have you ever been stuck in an airport because your flight was delayed or cancelled and wondered if you could have predicted the delay if you'd had more data?) This dataset is attractive because it is more similar to what analysts actually see in the wild than what is typically taught in the introductory statistics classroom.

Flights to San Francisco Bay We start with an analysis focused on three airports in the San Francisco Bay area (OAK, SFO, and SJC) for flights that depart from New York City airports.

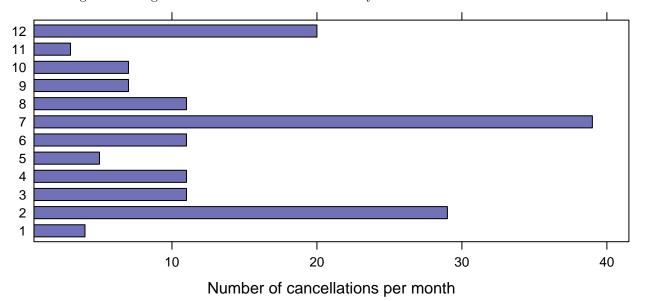
	faa	name	lat	lon	alt	tz	dst
1	OAK	Metropolitan Oakland Intl	37.72	-122.22	9	-8.00	A
2	SFO	San Francisco Intl	37.62	-122.37	13	-8.00	A
3	SJC	Norman Y Mineta San Jose Intl	37.36	-121.93	62	-8.00	A

How many flights are there to each airport in January, 2013?

	year	month	dest	count
1	2013	1	OAK	20
2	2013	1	SFO	889
3	2013	1	SJC	20

Almost all are to San Francisco International (SFO). Let's take a closer look at what carriers service this route.

	count	percent
American Airlines Inc.	1422.00	10.67
Delta Air Lines Inc.	1858.00	13.94
JetBlue Airways	1035.00	7.76
United Air Lines Inc.	6819.00	51.15
Virgin America	2197.00	16.48
Total	13331.00	100.00


United is the largest carrier (it accounts for more than half of the flights).

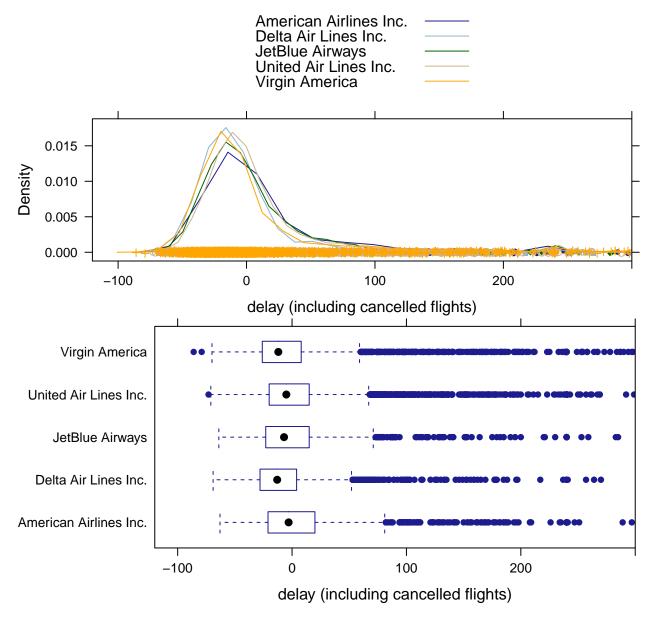
Are there different delays by carrier? Each of the carriers has at least a thousand flights, so it's likely that estimates of arrival delays may be reasonable to estimate. Let's calculate summary statistics of the arrival delay for the flights to SFO by carrier.

	name	min	Q1	median	Q3	max	mean	sd	n	missing
1	American Airlines Inc.	-63.00	-21.00	-4.00	18.00	1007.00	9.68	58.72	1398	24
2	Delta Air Lines Inc.	-69.00	-28.00	-13.00	3.25	561.00	-5.88	39.89	1848	10
3	JetBlue Airways	-64.00	-23.00	-7.00	14.00	445.00	3.58	46.14	1020	15
4	United Air Lines Inc.	-73.00	-21.00	-6.00	13.00	422.00	3.14	41.99	6728	91
5	Virgin America	-86.00	-26.00	-12.00	7.00	676.00	3.58	60.38	2179	18

The "average" results (as provided by the median) is that flights arrive a few minutes early for each of these carriers. And even the 3rd quartile or the mean are relatively modest delays (all less than 20 minutes after the scheduled arrival time). But the maximum delays can be large (e.g., more than 10 hours for Virgin America and American Airlines).

We also observe that a number of flights are missing their arrival delay. Those missing values are likely cancelled flights. We might be interested in which month they occurred?

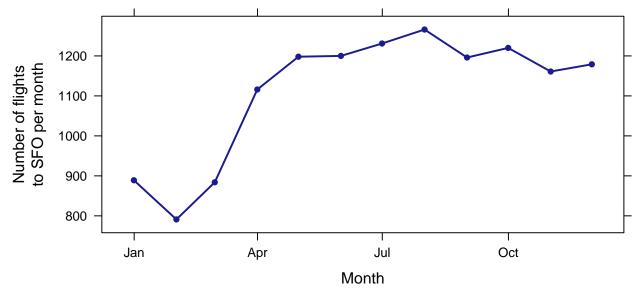
Cancelled flights seem to be most common in July, February, and December.


How should the cancelled flights be handled? (Note that there were excluded from the calculation of the summary statistics displayed earlier.)

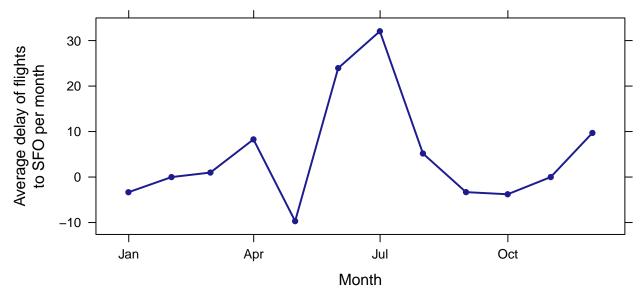
One option might be to recode these as 4 hour (240 minute) delays, since it's likely that if a flight is cancelled the expected delay might be of that duration on average. (This is an arbitrary choice: students might be asked what other options are reasonable. More sophisticated approaches could implement a "hurdle" method with a model for the probability of not being cancelled along with a model for the "average" delay for those flights that were not cancelled.)

Let's revisit the distribution of real delays (accounting for cancellations) by carrier.

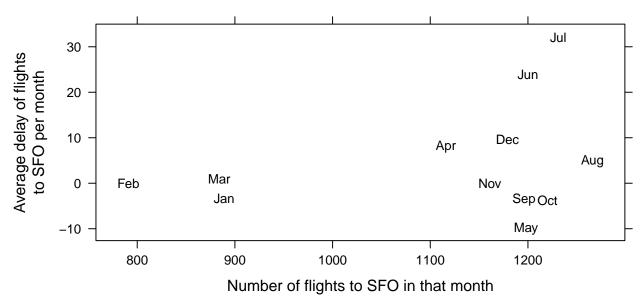
A parallel graphical description of the flights delays to San Francisco airport can be used to judge the airlines.


-	name	min	Q1	median	Q3	max	mean	sd	n	missing
1	American Airlines Inc.	-63.00	-21.00	-3.00	20.00	1007.00	13.57	65.35	1422	0
2	Delta Air Lines Inc.	-69.00	-27.75	-13.00	4.00	561.00	-4.56	43.67	1858	0
3	JetBlue Airways	-64.00	-23.00	-7.00	15.00	445.00	7.01	53.82	1035	0
4	United Air Lines Inc.	-73.00	-20.00	-5.00	15.00	422.00	6.30	49.78	6819	0
5	Virgin America	-86.00	-26.00	-12.00	8.00	676.00	5.51	63.80	2197	0

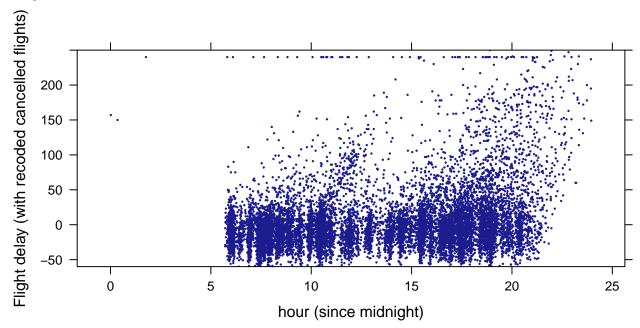
Note that the distributions have been rescaled so that only those flights between 2 hours early and 5 hours late are displayed (this excludes some of the extreme outliers).


The distributions appear to be somewhat symmetrically distributed around zero delays but with extremely long right tails. Different information is conveyed in the two representations: the overlapping density plots provide a clear sense of the shape of the distributions but are somewhat crowded. The boxplots make it easy to compare airline reliability, and to see the quantiles.

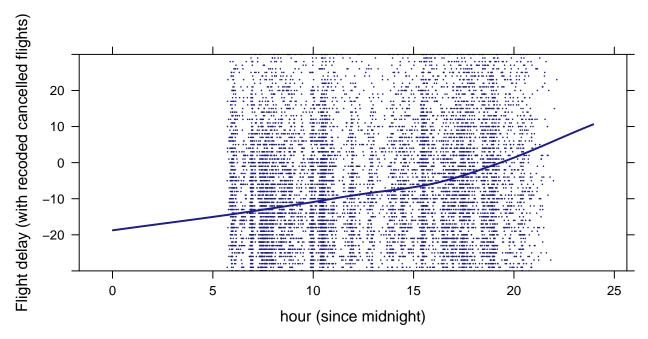
Is there seasonality to the number of flights? We can consider whether the number of flights changes month by month.


We observe that there are some interesting patterns over the course of the year for SFO: the number of flights in January, February, and March is considerably less than the other nine months.

Predictors of delays How is month of flight associated with delays?


We see that the largest average delays occur in the summer (with both June and July having an average above 20 minutes).

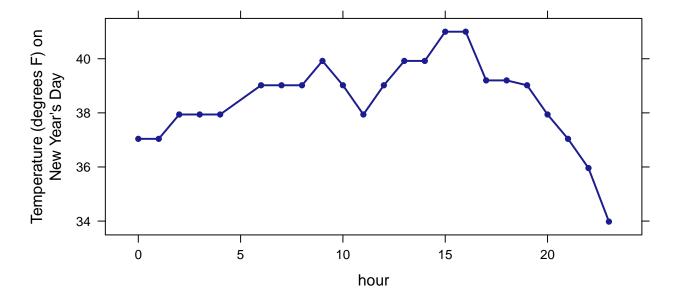
Is there an association between the number of flights in a month and the average delay?


There is not much of a pattern, but the delays seem to be more variable on months with more flights.

Another question that travelers might consider is whether the departure time matter as a predictor of flight delays?

A number of observations can be made from this graphical display. Very few flights depart between midnight and 5:30am. Most flights are on time, but there does appear to be a pattern that more delays occur for flights that are scheduled to depart later in the day.

We can improve the display by zooming in and adding a scatterplot smooth.



While there is some indication that delays tend to be more common (and slightly longer) as the day proceeds, the effect is modest for flights to San Francisco.

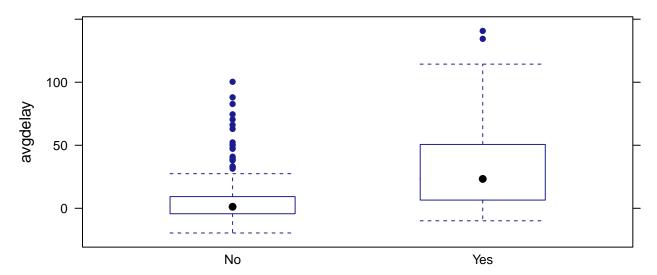
Weather Other factors affect airline delays. This might include the weather.

The nycflights13 package in R includes other data scraped from the Internet (in this case detailed weather information). We can display the temperature (in degrees Fahrenheit) on New Year's Day, 2013.

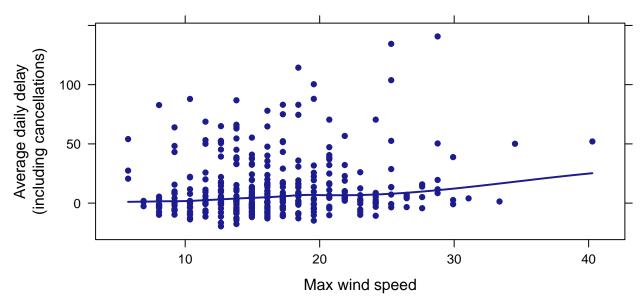
	month	day	hour	dewp	humid	$wind_speed$	$\operatorname{wind}_{\operatorname{dir}}$	precip	pressure
1	1.00	1	0	21.92	53.97	10.36	230.00	0.00	1013.90
2	1.00	1	1	21.92	53.97	13.81	230.00	0.00	1013.00
3	1.00	1	2	21.92	52.09	12.66	230.00	0.00	1012.60
4	1.00	1	3	23.00	54.51	13.81	230.00	0.00	1012.70
5	1.00	1	4	24.08	57.04	14.96	240.00	0.00	1012.80
6	1.00	1	6	26.06	59.37	10.36	270.00	0.00	1012.00

Let's take a look at daily averages for delays as well as total precipation and maximum wind speed. First we undertake the merge and display a set of values.

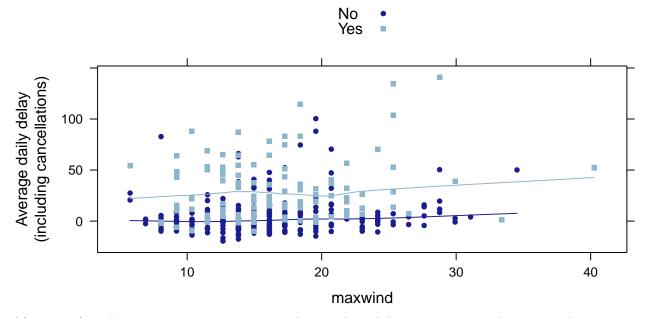
	month	day	avgdelay	totprecip	maxwind	anyprecip
1	1.00	1	15.62	0.00	16.11	No
2	1.00	2	16.31	0.00	18.41	No
3	1.00	3	9.32	0.00	11.51	No
4	1.00	4	-0.08	0.00	24.17	No
5	1.00	5	-0.52	0.00	18.41	No
6	1.00	6	5.09	0.00	14.96	No


A dramatic outlier is immediately spotted: windspeeds of 1000 mph are not common! This must be an error.

min	Q1	median	Q3	max	mean	sd	n	missing
5.75	12.66	16.11	19.56	1048.36	19.26	54.43	363	2


	month	day	avgdelay	totprecip	maxwind	anyprecip
1	2.00	12	0.30	0.00	1048.36	No

Let's remove this outlier and consider the association between any precipiation and average delays.


Association of delay with any precipitation

Precipitation seems to be associated with delays:

Max windspeed also seems to be associated with delays.

After stratifying by precipitation status, we see that windspeed does not appear to be a major determinant of delays. Precipitation seems to be the issue.

Closing thoughts and further resources

The dataset (as a series of comma separated variable files), copies of the R Markdown and formatted files for these analyses (to allow replication of the analyses) along with further background on the Airline Delays dataset can be found at http://www.amherst.edu/~nhorton/precursors.

Horton, N.J., Baumer, B.S., and Wichham H. (2015) Setting the stage for data science: integration of data management skills in introductory and second courses in statistics", *CHANCE*, 28(2):40-50, http://chance.amstat.org/2015/04/setting-the-stage.

Kane, M. Strategies for analyzing a 12-gigabyte data set: airline flight delays (2015) in $Data\ Science\ in\ R$: A $Case\ Studies\ Approach\ to\ Computational\ Reasoning\ and\ Problem\ Solving,\ Nolan\ D.\ and\ Temple\ Lang\ D,\ CRC\ Press.$

Wickham, H. (2011). ASA 2009 Data Expo, Journal of Computational and Graphical Statistics, 20(2):281-283.

Appendix In this appendix, the first few rows of each of the datasets is displayed.

airlines

```
## Source: local data frame [16 x 2]
##
##
      carrier
                                       name
##
        (chr)
                                      (chr)
## 1
           9E
                         Endeavor Air Inc.
## 2
           AA
                    American Airlines Inc.
## 3
           AS
                      Alaska Airlines Inc.
## 4
           В6
                           JetBlue Airways
## 5
           DL
                      Delta Air Lines Inc.
## 6
           ΕV
                  ExpressJet Airlines Inc.
## 7
           F9
                    Frontier Airlines Inc.
## 8
           FL AirTran Airways Corporation
## 9
           HA
                    Hawaiian Airlines Inc.
## 10
           MQ
                                  Envoy Air
## 11
           00
                     SkyWest Airlines Inc.
## 12
           UA
                     United Air Lines Inc.
## 13
           US
                           US Airways Inc.
## 14
           VX
                            Virgin America
## 15
           WN
                    Southwest Airlines Co.
## 16
           ΥV
                        Mesa Airlines Inc.
```

airports

```
## Source: local data frame [1,397 x 7]
##
##
        faa
                                         name
                                                lat
                                                        lon
                                                               alt
                                                                            dst
                                                                   (dbl) (chr)
##
      (chr)
                                        (chr) (dbl)
                                                      (dbl) (int)
## 1
        04G
                           Lansdowne Airport
                                               41.1
                                                      -80.6
                                                              1044
        06A
                                                      -85.7
## 2
             Moton Field Municipal Airport
                                               32.5
                                                               264
                                                                      -5
                                                                              Α
## 3
        06C
                         Schaumburg Regional
                                               42.0
                                                      -88.1
                                                                      -6
                                                               801
                                                                              Α
                                                      -74.4
## 4
        06N
                             Randall Airport
                                               41.4
                                                               523
                                                                      -5
                                                                              Α
## 5
                      Jekyll Island Airport
                                                      -81.4
        09J
                                               31.1
                                                                11
                                                                      -4
                                                                              Α
        OA9 Elizabethton Municipal Airport
## 6
                                               36.4
                                                      -82.2
                                                              1593
                                                                      -4
                                                                              Α
## 7
        0G6
                    Williams County Airport
                                               41.5
                                                      -84.5
                                                               730
                                                                      -5
                                                                              Α
## 8
        0G7
              Finger Lakes Regional Airport
                                               42.9
                                                     -76.8
                                                               492
                                                                      -5
                                                                              Α
## 9
                                                                              U
        0P2
               Shoestring Aviation Airfield
                                               39.8 -76.6
                                                              1000
                                                                      -5
## 10
        0S9
                      Jefferson County Intl
                                               48.1 -122.8
                                                               108
                                                                      -8
                                                                              Α
##
   . .
        . . .
```

planes

```
## Source: local data frame [3,322 x 9]
##
## tailnum year type manufacturer model
## (chr) (int) (chr) (chr) (chr)
## 1 N10156 2004 Fixed wing multi engine EMBRAER EMB-145XR
```

```
N102UW 1998 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
      N103US 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
      N104UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
      N10575 2002 Fixed wing multi engine
## 5
                                                   EMBRAER EMB-145LR
      N105UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
## 7
      N107US 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
      N108UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
      N109UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
## 10 N110UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
## Variables not shown: engines (int), seats (int), speed (int), engine (chr)
flights
```

```
## Source: local data frame [336,776 x 18]
##
##
                    day dep_time dep_delay arr_time arr_delay carrier tailnum
       year month
##
                                      (dbl)
                                               (int)
                                                          (dbl)
                                                                  (chr)
      (int) (int) (int)
                            (int)
                                                                           (chr)
## 1
       2013
                1
                      1
                              517
                                          2
                                                  830
                                                             11
                                                                     UA N14228
## 2
       2013
                              533
                                                                     UA N24211
                1
                       1
                                          4
                                                  850
                                                             20
## 3
       2013
                1
                       1
                              542
                                          2
                                                 923
                                                             33
                                                                     AA N619AA
## 4
       2013
                              544
                                         -1
                                                1004
                                                            -18
                                                                     B6 N804JB
## 5
       2013
                              554
                                         -6
                                                 812
                                                            -25
                                                                     DL N668DN
                1
                      1
## 6
       2013
                1
                      1
                              554
                                         -4
                                                 740
                                                             12
                                                                     UA N39463
## 7
       2013
                      1
                              555
                                         -5
                                                 913
                                                             19
                                                                     B6 N516JB
                1
## 8
       2013
                              557
                                         -3
                                                 709
                                                            -14
                                                                     EV N829AS
                1
                      1
## 9
       2013
                              557
                                         -3
                                                  838
                                                             -8
                                                                     B6 N593JB
                1
                       1
## 10 2013
                      1
                              558
                                         -2
                                                  753
                                                              8
                1
                                                                     AA N3ALAA
                                        . . .
## Variables not shown: flight (int), origin (chr), dest (chr), air_time
     (dbl), distance (dbl), hour (dbl), minute (dbl), deptime (dbl),
     realdelay (dbl)
```

weather

```
## Source: local data frame [8,719 x 14]
## Groups: month, day, hour [8719]
##
##
                           day hour temp dewp humid wind_dir wind_speed
      origin year month
##
       (chr) (dbl) (dbl) (int) (int) (dbl) (dbl) (dbl)
                                                           (dbl)
                                                                      (dbl)
## 1
         EWR 2013
                       1
                             1
                                   0 37.0 21.9
                                                 54.0
                                                             230
                                                                      10.36
## 2
         EWR 2013
                                   1
                                      37.0 21.9 54.0
                                                             230
                                                                      13.81
                       1
                             1
## 3
         EWR 2013
                                      37.9 21.9
                                                             230
                       1
                             1
                                   2
                                                  52.1
                                                                      12.66
                                      37.9 23.0 54.5
## 4
         EWR 2013
                                                             230
                                   3
                                                                      13.81
                       1
                             1
         EWR
              2013
                                      37.9 24.1 57.0
                                                             240
## 5
                       1
                             1
                                   4
                                                                      14.96
## 6
                                      39.0 26.1 59.4
         EWR 2013
                       1
                             1
                                   6
                                                             270
                                                                      10.36
## 7
         EWR
              2013
                       1
                             1
                                   7
                                      39.0 27.0 61.6
                                                             250
                                                                      8.06
## 8
         EWR 2013
                                      39.0
                                            28.0 64.4
                       1
                             1
                                   8
                                                             240
                                                                      11.51
## 9
         EWR 2013
                       1
                             1
                                   9
                                      39.9
                                            28.0 62.2
                                                             250
                                                                      12.66
                                      39.0 28.0 64.4
                                                                      12.66
## 10
         EWR 2013
                       1
                             1
                                  10
                                                             260
         . . .
               . . .
                                       . . .
                                             . . .
## Variables not shown: wind_gust (dbl), precip (dbl), pressure (dbl), visib
     (dbl)
```