Big data in the intro stats class: use of the airline delays dataset to expose students to a real-world, complex dataset

Nicholas J. Horton

Amherst College, Amherst, MA, USA

January 17, 2014

nhorton@amherst.edu

Acknowledgements

- joint work with Ben Baumer (Smith College) and Hadley Wickham (Rice/RStudio)
- supported by NSF grant 0920350 (building a community around modeling, statistics, computation and calculus)
- more information at http://www.mosaic-web.org, examples at http://www.amherst.edu/~nhorton/airlines

Cautionary Note and Prelude Data Expo 2009

Motivation and Cautionary Note

ACM White Paper on Data Science (www.cra.org/ccc/files/ docs/init/bigdatawhitepaper.pdf)

The promise of data-driven decision-making is now being recognized broadly, and there is growing enthusiasm for the notion of "Big Data." (first line)

Cautionary Note and Prelude Data Expo 2009

Motivation and Cautionary Note

ACM White Paper on Data Science (www.cra.org/ccc/files/ docs/init/bigdatawhitepaper.pdf)

The promise of data-driven decision-making is now being recognized broadly, and there is growing enthusiasm for the notion of "Big Data." (first line)

Methods for querying and mining Big Data are fundamentally different from traditional statistical analysis on small samples. (first mention of statistics, page 7)

Cautionary Note and Prelude Data Expo 2009

Motivation and Cautionary Note

ACM White Paper on Data Science (www.cra.org/ccc/files/ docs/init/bigdatawhitepaper.pdf)

The promise of data-driven decision-making is now being recognized broadly, and there is growing enthusiasm for the notion of "Big Data." (first line)

Methods for querying and mining Big Data are fundamentally different from traditional statistical analysis on small samples. (first mention of statistics, page 7)

Do statisticians just provide old-school tools for use by the new breed of data scientists?

Cautionary Note and Prelude Data Expo 2009

Cautionary Note (cont.)

- Cobb argued (TISE, 2007) that our courses teach techniques developed by pre-computer-era statisticians as a way to address their lack of computational power
- Do our students see the potential and exciting use of statistics in our classes? (Gould, ISR, 2010)
- How do we respond to these external and internal challenges?

Cautionary Note and Prelude Data Expo 2009

Prelude (cont.)

How to accomplish this?

- start in the first course
- build on capacities in the second course
- develop more opportunities for students to apply their knowledge in practice (internships, collaborative research, teaching assistants)
- new courses focused on "Data Science"
- "Data Expo" and "Data Fest" opportunities (Gould, *Teaching Statistical Thinking in the Data Deluge*, 2014)
- today's goal: talk about what can be done early...

Introduction

Using this in intro stats Databases and SQL Closing thoughts Cautionary Note and Prelude Data Expo 2009

Data Expo 2009

Ask students: have you ever been stuck in an airport because your flight was delayed or cancelled and wondered if you could have predicted it if you'd had more data? (Wickham, JCGS, 2011)

Introduction

Using this in intro stats Databases and SQL Closing thoughts Cautionary Note and Prelude Data Expo 2009

Data Expo 2009

- dataset of flight arrival and departure details for all commercial flights within the USA, from October 1987 to April 2008 (but we now have through the end of 2012!)
- large dataset: nearly 150 million records
- aim: provide a graphical summary of important features of the data set
- winners presented at the JSM in 2009; details at http://stat-computing.org/dataexpo/2009

Cautionary Note and Prelude Data Expo 2009

Airline Delays Codebook (abridged)

```
Year 1987, 1998, ..., 2012
     Month 1 through 12
DavofMonth 1 through 31
DayOfWeek 1=Monday, 7=Sunday
   DepTime departure time
UniqueCarrier OH = Comair, DL = Delta, etc.
   TailNum plane tail number
   ArrDelay arrival delay, in minutes
     Origin BDL, BOS, MSP, PHX, SFO, etc.
       Dest
```

Full details at http://www.transtats.bts.gov/Fields.asp?Table_ID=236

Introduction

Using this in intro stats Databases and SQL Closing thoughts Cautionary Note and Prelude Data Expo 2009

Sampling of the Data Expo 2009 winners

Nicholas J. Horton A

Airline delays

Introduction

Using this in intro stats Databases and SQL Closing thoughts Cautionary Note and Prelude Data Expo 2009

Sampling of the Data Expo 2009 winners

CAN WE SEE WHAT IS NOT THERE?

Planes have, for reasons such as maintenance, weather, or schedule fly empty between airports as so-called *Ghosts*. By tracking individual planes, we reveal their paths, including situations, where a plane lands in a different airport than where it takes off later, i.e. a ghost:

Example: US Airways Aircraft N-881 - Ghostflight from PIT to RIC (222 miles)

Year	Month	Day	DepTime	ArrTime	Origin	Dest	Diverted
1995	3	8	1102	1256	PIT	CVG	0
1995	3	8	1311	NA	CVG	PIT	1
1995	3	8	1913	2050	RIC	PIT	0
1995	3	8	2134	2300	PIT	MSY	0

Ghost Flight Totals: over 1 million flights since 1995, with an average dis-

Airline delays

Cautionary Note and Prelude Data Expo 2009

< □ > < 同 > < 回 >

Sampling of the Data Expo 2009 winners

A Tale of Two Airports AN EXPLORATION OF FLIGHT TRAFFIC AT OAK AND SFO

Model Eliciting Activity Extensions

Model Eliciting Activity

- how would you determine if one airline was more reliable than another?
- give students a small sample from the airlines dataset for one city pair for two airlines
- CATALST project, http://serc.carleton.edu/sp/ library/mea/examples/example5.html
- original MEA requires no technology
- students work in groups of 3 or 4

Model Eliciting Activity Extensions

Statistical questions (when to "make the call")

- Is there a difference in the reliability as measured by arrival time delays for these two regional airlines out of Chicago? Or are both airlines pretty much the same in terms of their arrival time delays?
- If there are differences, are these differences consistent from city to city?
- Are any differences you find large enough to influence travelers so that they are advised to choose one airline over the other (all other factors, like cost, being equal)?

Model Eliciting Activity Extensions

Using this in intro

- compare differences in 5 sample statistics
- come up with a rule using two or more of those measures to determine when the "make the call" for which airline might be more reliable

Model Eliciting Activity Extensions

Using this in intro

- compare differences in 5 sample statistics
- examples: difference in mean delay, difference in proportion delayed, difference in IQR, difference in means for flights that were delayed

Model Eliciting Activity Extensions

Using this in intro

Data Values (in minutes)

AMERICAN EAGLE -10 -9 -2 -1 9 13 17 54 98 236

mean = 40.5 sd = 76.4

MESA

-22 -16 -14 -8 -5 0 0 3 4 28

mean = -3.0 sd = 13.92

- compare differences in 5 sample statistics
- come up with a rule using two or more of those measures to determine when the "make the call" for which airline might be more reliable

Model Eliciting Activity Extensions

Using this in intro

• compare to new city pairs (in class), and summarize performance of their rule

< 10 × 4

Model Eliciting Activity Extensions

Using this in intro

 return later in course to let them assess the performance of their rule more formally (by repeatedly sampling)

< A >

Model Eliciting Activity Extensions

Using this in intro

 explore further analyses and student generated questions (their favorate airline or airport) as part of end of semester project

A - A - A

Databases and SQL 101 Creating a database (using SQLite or MySQL) Sample queries Green Bay and the MEA

Background on databases and SQL

- no technology needed for initial MEA
- modest investment can allow use of a rich dataset
- instructors need some background on databases and SQL
- relational databases (invented in 1970)
- like electronic filing cabinets to organize masses of data (terabytes)
- fast and efficient
- useful reference: Learning MySQL, O'Reilly 2007

Databases and SQL 101 Creating a database (using SQLite or MySQL) Sample queries Green Bay and the MEA

Client and server model

- server: manages data
- client: ask server to do things
- use R as the client (using an add-on package such as RMySQL or RSQLite)

Databases and SQL 101 Creating a database (using SQLite or MySQL) Sample queries Green Bay and the MEA

< 4 ₽ > < 3

- Structured Query Language
- special purpose programming language for managing data
- developed in early 1970's
- standardized (multiple times)
- most common operation is query (using SELECT)

Databases and SQL 101 Creating a database (using SQLite or MySQL) Sample queries Green Bay and the MEA

advantage: free, quick, dirty, simple (runs locally) disadvantage: not as robust, fast, or flexible than other free alternatives such as MySQL (which run remotely)

For personal use, or to get started SQLite is ideal (can get up and running in an hour).

For a class, I'd recommend MySQL.

Databases and SQL 101 Creating a database (using SQLite or MySQL) Sample queries Green Bay and the MEA

Creating the airline delays database (approx. 1 hour for SQLite)

- I download and install SQLite from sqlite.org
- Ø download the data (1.6gb compressed, 12gb uncompressed)
- Oreate a table with fields that match the csv files
- Ioad the data with the .import directive
- **o** add indices (to speed up access to the data, takes some time)
- Install and load the RSQLite package
- ø establish a connection (using dbConnect())
- start to make selections (which will be returned as data frames) using the dbGetQuery() function

Databases and SQL 101 Creating a database (using SQLite or MySQL) Sample queries Green Bay and the MEA

Accessing the database

```
# establish the connection
require(RMySQL)
con = dbConnect(MySQL(), host="rucker.smith.edu",
    dbname="airlines")
# count the number of records in the database
ds = dbGetQuery(con, "SELECT COUNT(*) FROM ontime")
```

COUNT(*)

1 1.49e+08

Introduction Databases and SQL 101 Creating a database (using SQLite or MySQL) Databases and SQL Closing thoughts Green Bay and the MEA

GROUP BY

dbGetQuery(con, "SELECT Year,									
(COUNT(*)	as numFlights FROM ontime GROUP BY Year")							
	Year num	nFlights							
1	1987	1311826							
2	1988	5202096							
3	1989	5041200							
•••									
23	2009	6450285							
24	2010	6450117							
25	2011	6085281							
26	2012	6096762							

*ロ * * @ * * 注 * * 注 *

æ

Introduction Databases and SQL 101 Using this in intro stats Databases and SQL SQLite or MySQL) Databases and SQL Closing thoughts Green Bay and the MEA

WHERE

```
dbGetQuery(con, "SELECT Year,
COUNT(*) as numFlights FROM ontime
WHERE (Dest='MSP' OR Origin='MSP') GROUP BY Year")
```

	Year	numFlights
1	1987	46709
2	1988	192471
3	1989	199256
23	2009	240175
24	2010	251610
25	2011	208626
26	2012	221145

(日) (同) (三) (三)

э

Introduction Databases and SQL 101 Using this in intro stats Creating a database (using SQLite or MySQL) Databases and SQL Closing thoughts Green Bay and the MEA

Flights into and out of MSP by year

Introduction Databases and SQL 101 Creating a database (using SQLite or MySQL) Databases and SQL Closing thoughts Green Bay and the MEA

WHERE

dł	dbGetQuery(con, "SELECT * FROM ontime												
	WHERE	(Orig	gin=	'MSP' an	d I	Dest='BD)L'	AND Y	ear	=2012	2		
	AND Month=10 AND DayofMonth=8)")												
	Year M	lonth	Dayo	ofMonth	Day	yOfWeek	Dep	oTime	CRS	DepTi	me A	rrTime	
1	2012	10		8		1		701		7	'05	1038	
2	2012	10		8		1		1319		13	325	1659	
3	2012	10		8		1		1922		19	930	2255	
	CRSArr	Time	Unic	queCarri	er	FlightN	lum	TailN	um	Actua	lEla	psedTime	
1		1043			EV	55	45	N723	EV			157	
2		1659			DL	12	26	N958	DN			160	
3		2305			DL	21	.70	N954	DL			153	
	CRSEla	psed	Гime	AirTime	Αı	rrDelay	Dep	Delay	Or	igin	Dest	Distance	
1			158	134		-5		-4		MSP	BDL	1050	
2			154	127		0		-6		MSP	BDL	1050	
3			155	129		-10		-8		MSP	BDL	1050	
	TaxiIn	Tax	iOut	Cancell	ed	Cancell	.ati	ionCod	еľ)ivert	ed		
1	6		17		0						0		
2	6	;	27		0				•	• • •	, Q	≅≻ ≺ ≅ ≻ – ≅	

Nicholas J. Horton Airline delays

Introduction Databases and SQL 101 Using this in intro stats Creating a database (using SQLite or MySQL) Databases and SQL Closing thoughts Green Bay and the MEA

Downloading data from Green Bay

ds2 = dbGetQuery(con, "SELECT UniqueCarrier, ArrDelay, Month, Year, Origin, Dest FROM ontime WHERE Origin='GRB' AND Dest='ORD' AND Year=2005") dim(ds2) [1] 2166 6

- 4 同 6 4 日 6 4 日 6

Introduction Databases and SQL 101 Creating a database (using SQLite or MySQL) Databases and SQL Closing thoughts Green Bay and the MEA

Take a peek at 6 flights on Mesa

<pre>head(subset(ds2, UniqueCarrier == "MQ"))</pre>									
##		UniqueCarrier	ArrDelay	${\tt Month}$	Year	Origin	Dest		
##	1	MQ	41	1	2005	GRB	ORD		
##	2	MQ	3	1	2005	GRB	ORD		
##	3	MQ	144	1	2005	GRB	ORD		
##	4	MQ	9	1	2005	GRB	ORD		
##	5	MQ	168	1	2005	GRB	ORD		
##	6	MQ	5	1	2005	GRB	ORD		

<ロト <部ト < 注ト < 注ト

æ

Introduction Databases and SQL 101 Using this in intro stats Creating a database (using SQLite or MySQL Databases and SQL Sample queries Closing thoughts Green Bay and the MEA

Testing using the population data

- once downloaded the distribution of flight delays by airline can be compared
- students can sample from this population, testing their rule each time
- requires a clear statement of their rule for the instructor or TA to craft a function in R
- example: one airline is better if it is at least 30 minutes less mean delays, and the sample standard deviation in each group is no more than 60 minutes

Nicholas J. Horton

Introduction Databases and SQL 101 Using this in intro stats Creating a database (using SQLite or MySQL) Databases and SQL Closing thoughts Green Bay and the MEA

Comparison of rule over 2000 samples

Closing thoughts

- MEA's bring big ideas into the classroom
- SQL is a powerful and flexible way to address big(ger) data
- straightforward to set up and use
- helps to allow instructors (and in later classes, students), tackle more interesting questions

Which month is it best to travel (airline averages/BDL)?

Which day is it best to travel (airline averages from BDL)?

Maps and visualization

Big data in the intro stats class: use of the airline delays dataset to expose students to a real-world, complex dataset

Nicholas J. Horton

Amherst College, Amherst, MA, USA

January 17, 2014

nhorton@amherst.edu

examples at http://www.amherst.edu/~nhorton/airlines