
Statistical Computing Software Reviews

Multiple Imputation in Practice: Comparison of Software
Packages for Regression Models With Missing Variables

Nicholas J. HORTON and Stuart R. LIPSITZ

Missing data frequently complicates data analysis for scientific
investigations. The development of statistical methods to ad-
dress missing data has been an active area of research in recent
decades. Multiple imputation, originally proposed by Rubin in
a public use dataset setting, is a general purpose method for an-
alyzing datasets with missing data that is broadly applicable to a
variety of missing data settings. We review multiple imputation
as an analytic strategy for missing data. We describe and evaluate
a number of software packages that implement this procedure,
and contrast the interface, features, and results. We compare the
packages, and detail shortcomings and useful features. The com-
parisons are illustrated using examples from an artificial dataset
and a study of child psychopathology. We suggest additional
features as well as discuss limitations and cautions to consider
when using multiple imputation as an analytic strategy for in-
complete data settings.

KEY WORDS: Generalized linear models; Incomplete data;
Markov Chain Monte Carlo; Missing outcomes; Missing pre-
dictors.

1. INTRODUCTION

Missing data is a commonly occurring complication in many
scientific investigations. Determining the appropriate analytic
approach in the presence of incomplete observations is a major
question for data analysts. The development of statistical meth-
ods to address missing data has been an active area of research in
recent decades (Rubin 1976; Little and Rubin 1987; Laird 1988;
Ibrahim 1990; Little 1992; Robins, Rotnitzky, and Zhao 1994,
1995; Horton and Laird 1999). There are three types of concerns
that typically arise with missing data: (1) loss of efficiency; (2)
complication in data handling and analysis; and (3) bias due to
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differences between the observed and unobserved data (Barnard
and Meng 1999). One approach to incomplete data problems
that addresses these concerns is multiple imputation, which was
proposed 20 years ago by Rubin (1977) and described in detail
by Rubin (1987) and Schafer (1997). A concise and readable
primer can be found in Schafer (1999), while Rubin (1996) pro-
vided an extensive bibliography.

This article reviews multiple imputation, describes assump-
tions that it requires, and reviews software packages that im-
plement this procedure. We apply the methods and compare the
results using two examples—a child psychopathology dataset
with missing outcomes and an artificial dataset with missing co-
variates. We conclude with some discussion of the strengths and
weaknesses of these implementations as well as advantages and
limitations of imputation.

2. MULTIPLE IMPUTATION

Rubin (1996) described multiple imputation as a three-step
process. First, sets of plausible values for missing observations
are created that reflect uncertainty about the nonresponse model.
Each of these sets of plausible values can be used to “fill-in” the
missing values and create a “completed” dataset. Second, each
of these datasets can be analyzed using complete-data methods.
Finally, the results are combined, which allows the uncertainty
regarding the imputation to be taken into account.

The method of multiple imputation was first proposed in a
public-use survey data setting. Consider an intensive survey of
a small geographical area, where some observations were miss-
ing or incomplete. Other researchers, whom we denote as users
of the survey, may have interest in these data. Care needs to be
taken by the creators of the survey to ensure that respondents
are not uniquely identified based on characteristics included in
the public dataset. Note that disclosure of the identity of the
respondents may occur if too much information (such as area,
gender, ethnicity, occupation, age, and so on) is provided regard-
ing the sample (Fienberg 1994; Fienberg and Willenborg 1998;
Zaslavsky and Horton 1998).

Multiple imputation remains ideally suited to this setting,
since the creators can use auxiliary confidential and detailed
information that would be inappropriate to include in the pub-
lic dataset (Rubin 1996). This comprehensive set of information
about the study can be used to “fill-in” or impute sets of values
for incomplete observations. Given the complete datasets, users
may utilize existing software to analyse each of the datasets.
Finally, given the results for each analysis, an overall summary
is straightforward to calculate.
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Although multiple imputation was initially proposed by Ru-
bin for public use data, its use has broadened to general pur-
pose missing data settings. Here we consider general regression
models with outcomes (denoted by Y, which may be scalar or
vector valued) and a vector of predictors (denoted by X). For
a given subject, these quantities are either observed or miss-
ing. We denote Yobs as the observed component of the outcome
and Xobs as the observed components of the predictors. Simi-
larly, we denote Ymis and Xmis as the unobserved components
of the outcome and predictors, respectively. We will also refer
to Zmis = (Ymis, Xmis) and Zobs = (Yobs, Xobs).

Primary interest revolves around the regression parameters β
governing the conditional distribution of Y given X: f(Y|X,β),
and we are concerned with efficiency issues, complications in
analysis, and bias. Before describing multiple imputation in de-
tail, we will review classifications for the probability distribution
generating the missing data, using the nomenclature of Little and
Rubin (1987).

2.1 Missing Data Classifications

Let Z be partially observed, where R is a set of response
indicators (i.e., Rj = 1 if the jth element of Z is observed, and
equals 0 otherwise), governed by parameters φ. The missing
completely at random (MCAR) assumption is defined as

P (R|Z) = P (R|Zobs, Zmis) = P (R|φ),

where in addition φ and β are presumed distinct. Heuristically,
this assumption states that missingness is not related to any fac-
tor, known or unknown, in the study.

It may be more plausible to posit that missingness is missing
at random (MAR), which assumes that

P (R|Z) = P (R|Zobs,φ).

Heuristically, this states that the missingness depends only on
observed quantities, which may include outcomes, and a rich
set of predictors. It is possible to statistically test the MCAR
assumption, against the alternate hypothesis that missingness is
MAR (Diggle, Liang, and Zeger 1994; Little 1988).

Finally, if the missingness law P (R|Z) cannot be simplified
(i.e., it depends on unobserved quantities), the process is termed
nonignorable. In a nonignorable nonresponse setting, the cor-
rect specification of the missingness law must be given to yield
consistent estimates of the regression parameters. Without addi-
tional information, it is impossible to test the MAR assumption
against a nonignorable alternative (Little and Rubin 1987).

Monotone Nonmonotone

Obs Z1 Z2 Z3 Z1 Z2 Z3

1 O O O O M O
2 O M M O M M
3 O M M O M M
4 O M M O M M
5 O O M O O M
6 O O M O O M
7 O O M O O M
8 O O O O O O

Figure 1. Monotone and Nonmonotone Patterns of Missingness
(O = observed, M = missing).

Another important distinction regarding the missing data
refers to the pattern of missing data. If the data matrix can be
rearranged in such a way that there is a hierarchy of missingness,
such that observing a particular variable Zb for a subject implies
that Za is observed, for a < b, then the missingness is said to be
monotone. Simpler imputation methods can be used if the pattern
is monotone, though a monotone pattern is uncommon in most
complex investigations. It may be possible, however, to create a
monotone missingness pattern that separates out a small number
of observations that are non-monotone. In the nonmonotone ex-
ample in Figure 1, all but the first observation can be rearranged
into a monotone pattern (i.e., 83% of the dataset). This type of
hybrid pattern is exploited by a number of computer packages,
since this allows a much simpler model to be estimated.

It is important to note that in many realistic settings, datasets
may have missing outcomes as well as missing predictors (Little
1992). Such patterns tend to complicate analysis, particularly for
regression models with many predictors.

2.2 Steps for Multiple Imputation

More formally, the three steps for multiple imputation consist
of:

Imputation: Generate a set of m > 1 plausible values for
Zmis = (Ymis, Xmis).

Analysis: Analyze the m datasets using complete-case methods.
Combination: Combine the results from the m analyses.

Imputation step—The imputation step is perhaps most criti-
cal, since it relies upon assumptions regarding the missingness
law that generated the observed sample. The goal of the imputa-
tion is to account for the relationships between the unobserved
and observed variables, while taking into account the uncer-
tainty of the imputation. The MAR assumption (which is gener-
ally assumed for many missing data methods, and as previously
noted is untestable without additional information) is key to the
validity of multiple imputation. Use of this assumption allows
the analyst to generate imputations (Z{1}, Z{2}, . . . Z{m}) from
the distribution f(Zmis|Zobs), since after conditioning on Zobs,
missingness is assumed to be due to chance.

There are a variety of imputation models that have been used.
When missingness is monotone, simple methods have been pro-
posed, including (for continuous variables) propensity methods
(Rosenbaum and Rubin 1983), predictive mean matching (Lit-
tle 1988), and (for discrete variables) discriminant analysis or
logistic regression. For more complicated missingness, Markov
Chain Monte Carlo (MCMC) approaches have been suggested.
Both the predictive mean matching and MCMC approaches re-
quire assumptions of multivariate normality, but there is some
evidence (see, e.g., Schafer 1997) that the inferences tend to be
robust to minor departures from this assumption.

As an example of an imputation model, we will describe the
predictive mean matching approach, where a linear regression
is postulated for the distribution of a partially observed variable,
conditional on other factors. For the predictive mean matching
approach with a variable Zj with missing values, a model is fit
using complete observations for Z1, . . . , Zj−1:

E[Zj |φ] = φ0 + φ1Z1 + φ2Z2 + · · · + φj−1Zj−1. (1)
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Next, new parameters φ∗ are drawn from the distribution of the
parameters (since these values were estimated and not known
with certainty). Finally, for the ith imputation, the missing values
are replaced by:

Z
(i)
j = φ∗

0 + φ∗
1Z1 + φ∗

2Z2 + · · · + φ∗
j−1Zj−1 + σ∗ε,

where σ∗ is the estimate of variance from the model and ε is a
simulated normal random variate. We refer to this as the regres-
sion method. A variant of this approach imputes the observed
value of Zj that is closest to Ẑj in the dataset; this ensures that
imputed values are plausible, and may be more appropriate if
the normality assumption is violated. We refer to this as the
predictive mean matching method. The predictive mean model
assumes a linear regression model and a monotone structure,
otherwise there will be missing predictors in model (1).

The propensity score method uses a different model for im-
putation. Here, values are imputed from observations that are
equally likely to be missing, by fitting a logistic regression model
for the missingness indicators. Allison (2000) noted that this
method can yield serious bias for imputation of missing covari-
ates under some settings.

For discrete incomplete variables, discriminant analysis (or
logistic regression for dichotomous variables) can be used to
impute values based on the estimated probability that a miss-
ing value takes on a certain value P (Zmis

j = k|Zobs). Using
Bayes’s theorem, this can be calculated from estimates of the
joint distribution of Z.

Finally, the MCMC method constructs a Markov chain to
simulate draws from the posterior distribution of f(Zmis|Zobs).
This can be implemented using the IP algorithm (Schafer 1997),
where at the tth iteration the steps can be defined as:

Imputation-step: Draw Zmis,(t+1) from f(Z|Zobs,φ(t)).

Parameter-step: Draw φ(t+1) from f(φ|Zobs, Zmis,(t+1)).

The Markov chain
({

Z(1),φ(1)
}

,
{

Z(2),φ(2)
}

, . . . ,
{

Z(t+1),φ(t+1)
}

, . . .
)

can be shown to converge to the posterior distribution of inter-
est. This method has the advantage that it can handle arbitrary
patterns of missing data. Schafer (1997) provided a complete
exposition of the method in the imputation setting, while Gilks,
Richardson, and Spiegelhalter (1996) described the background
as well as other applications. As a computational tool MCMC
has some downsides; it requires an assumption of multivari-
ate normality, it is complicated and computationally expensive.
Convergence is difficult to determine, and remains more of an
art form than a science. However, MCMC is available in SAS,
S-Plus, and MICE, and thus is becoming more mainstream.

Some practical suggestions for what variables to include in
the imputation model were given by van Buuren, Boshuizen,
and Knook (1999). They recommended that this set of variables
includes those in the complete data model, factors known to be
associated with missingness, and factors that explain a consid-
erable amount of variance for the target variables.

“Complete data” analysis step—The next step in the imputa-
tion process is to carry out the analysis of interest for each of the
m imputed complete-observation datasets, storing the parameter
vector and standard error estimates.

Combination step—Finally, the results are combined using
results from Rubin (1987), to calculate estimates of the within
imputation and between imputation variability. These statistics
account for the variability of the imputations and assuming that
the imputation model is correct, provide consistent estimates of
the parameters and their standard errors. There has been an ex-
tensive literature regarding the asymptotic behavior of multiple
imputation methods (Barnard and Rubin 1999; Meng and Rubin
1992; Robins and Wang 2000; Rubin 1996; Wang and Robins
1998) these issues are not further considered here.

Notes about imputation—It should be noted that one advan-
tage of multiple imputation as an analytic approach is that it
allows the analyst to incorporate additional information into the
imputation model. This auxiliary (or extraneous) information
may not be of interest in the regression model, but may make
the MAR assumption increasingly plausible (Liu, Taylor, and
Belin 2000; Rubin 1996); such information is straightforward
to incorporate into the imputation model.

A useful quantity in interpreting results from multiple im-
putation is an estimate of the fraction of missing information
(Rubin 1987). This quantity, typically denoted by γ̂, denotes
how the missing data influence the uncertainty of estimates of β
(Schafer 1997). It has been noted that even with a large fraction
of missing information, a relatively small number of imputa-
tions provides estimates of standard errors that are almost fully
efficient (Schafer 1997). Schafer (1999) suggested that no more
than 10 imputations are usually required, though this should be
investigated more closely if the fraction of missing information
is large. In any case, the appropriate number of imputations can
be informally determined by carrying out replicate sets of m
imputations and determining whether the estimates are stable
between sets.

Before the advent of general purpose packages that supported
multiple imputation, the process of generating imputed datasets,
managing the results from each of the m datasets, and combining
the results required specialized programming or use of macros
that were difficult to use. The packages reviewed in this pa-
per, though still more complicated than complete case methods,
greatly facilitate the process of using multiple imputation.

3. SOFTWARE PACKAGES

SOLAS version 3.0
Statistical Solutions (North American office)
Stonehill Corporate Center, Suite 104,
999 Broadway, Saugus, MA 01906, USA.
Tel (781) 231-7680
http://www.statsol.ie/solas/solas.htm, sales@statsol.ie

SOLAS is designed specifically for the analysis of datasets
with missing observations. It offers a variety of multiple impu-
tation techniques in a single, easy-to-use package with a well-
designed graphical user interface.
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SOLAS supports predictive mean model (using the closest ob-
served value to the predicted value) and propensity score mod-
els for missing continuous variables, and discriminant models
for missing binary and categorical variables. Once the multiple
datasets are created, the package allows the calculation of de-
scriptive statistics, t tests and ANOVA, frequency tables, and
linear regression.

The system automatically provides summary measures by
combining the results from the multiple analyses. These re-
ports can be saved as rich text format (rtf) files. It has extensive
capabilities to read and write database formats (1-2-3, dBase,
FoxPro, Paradox), spreadsheets (Excel), and statistical packages
(Gauss, Minitab, SAS, S-Plus, SPSS, Stata, Statistica, and Sys-
tat). Imputed datasets can be exported to other statistical pack-
ages, though this is a somewhat cumbersome process, since the
combination of results from the multiple analyses then needs to
be done manually.

The new script language facility is particularly useful in doc-
umenting the steps of a multiple imputation run, and for con-
ducting simulations. It can be set up to automatically record the
settings from a menu-based multiple imputation session, and
store this configuration in a file for later revision and reuse.

SOLAS includes the ability to view missing data patterns, re-
view the quantity and positioning of missing values, and classify
them into categories of monotone or nonmonotone missingness.
Because it does not consolidate observations with the same pat-
tern of missing data, however, this feature is of limited utility in
large datasets.

A nice feature of SOLAS is the fine-grained and intuitive
control of the details of the imputation model. As an example,
incorporating auxiliary information (variables in the imputation
model but not in the regression model of interest) is straightfor-
ward.

There are a number of limitations to SOLAS’ implementa-
tion. It is primarily a package for multiple imputation in linear
regression models, and has limited data manipulation ability.
While there are extensive options for linear regression, it lacks
the completeness of general-purpose packages (e.g., specifica-
tion of interactions is cumbersome). Nonlinear regression meth-
ods, such as logistic or survival models, are not supported. Non-
monotone missingness is handled in an ad-hoc fashion. While
this may be acceptable in many applications, it is not always
appropriate (support for MCMC methods, not available in SO-
LAS, are particularly attractive in this setting). By default, SO-
LAS does not display any estimates of the fraction of missing
information (this can be calculated separately from the regres-
sion model), nor standard error estimates for the intercept. The
default behavior uses a fixed seed for the random number gen-
erator seed. While this can be set to 0 (or left blank) to use clock
time as seed (except within the script language), the default seed
will always yield the same imputation results. Using the clock
time as a pseudo-random seed would seem a more reasonable
default.

Installation was straightforward, and the interface was clear
and intuitive. The documentation (which consisted of three man-
uals, with a total of 487 pages) was well organized (it was the
only documentation with an index), and easy to read. The ex-

tensive examples with numerous screen-shots were useful in
introducing the user to SOLAS.

A single user license for SOLAS 3.0 costs $1,295 ($995 for
academic customers), while an upgrade from previous versions
costs $495.

SAS 8.2 (beta) SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513-2414
(919) 677-8000
http://www.sas.com, software@sas.com

The SAS System is described as an integrated suite of software
for enterprise-wide information delivery, which includes a ma-
jor module for statistical analysis, as implemented in SAS/STAT.
In release 8.1 two new experimental procedures (PROC MI and
PROC MIANALYZE) were made available, which implemented
multiple imputation. The interface for PROC MI changed sub-
stantially in release 8.2. SAS anticipates putting PROC MI and
PROC MIANALYZE into production for release 9.

The imputation step is carried out by PROC MI, which al-
lows use of either monotone (predictive mean matching, de-
noted by REGRESSION, or propensity, denoted by PROPEN-
SITY) or nonmonotone (using MCMC) missingness methods.
The MCMC methods can also be used in a hybrid model where
the dataset is divided into monotone and nonmonotone parts, and
a regression method is used for the monotone component. Exten-
sive control and graphical diagnostics of the MCMC methods are
provided. SAS supports transformation and back-transformation
of variables. This may make an assumption of multivariate nor-
mality, needed for the REGRESSION and MCMC methods,
more tenable (Schafer 1997).

Once PROC MI has been run, use of complete data methods
is straightforward; the only addition is the specification of a
BY statement to repeat these methods (i.e., PROC GLM, PROC
PHREG, or PROC LOGISTIC) for each value of the variable
Imputation . This approach is attractive, since it allows the

full range of regression models available within SAS to be used
in imputation.

The results are combined using PROC MIANALYZE, which
provides a clear summary of the results. SAS provides an op-
tion (EDF) to use the adjusted degrees of freedom suggested
by Barnard and Rubin (1999), and it displays estimates of the
fraction of missing information for each parameter.

A disadvantage of the imputation methods provided by PROC
MI is that the analyst has little control over the imputation model
itself. In addition, for the regression and MCMC methods, SAS
does not impute an observed value that is closest to the predicted
value (i.e., there is no support for predictive mean matching using
observed values). Instead, it uses an assumption of multivariate
normality to generate a plausible value for the imputation. SAS
allows the analyst to specify a minimum and maximum value
for imputed values on a variable-by-variable basis, as well as
the ability to round imputed values. In addition, a SAS data step
could be used to generate observed values. In practice, however,
both these approaches are somewhat cumbersome.

No additional installation was needed for PROC MI/PROC
MIANALYZE, since they are bundled with SAS/STAT. The doc-
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umentation was terse (69 pages for PROC MI, 31 pages for
PROC MIANALYZE), but well organized; a number of exam-
ples were provided.

SAS is licensed on an annual basis, on a per-module basis.
An annual license for base SAS and SAS/STAT is $3,900 for the
first year, and $1,900 for subsequent years. Academic discounts
are generally available.

Missing Data Library for S-Plus
Insightful (formerly MathSoft)
(800) 569-0123
http://www.insightful.com, sales@insightful.com

S-Plus 6.0 features a new missing data library, which extends
S-Plus to support model-based missing data models, by use of
the EM algorithm (Dempster, Laird, and Rubin 1977) and data
augmentation (DA) algorithms (Tanner and Wong 1987). DA
algorithms can be used to generate multiple imputations. The
missing data library provides support for multivariate normal
data (impGauss), categorical data (impLoglin), and con-
ditional Gaussian models (impCgm) for imputations involving
both discrete and continuous variables.

The package provides a concise summary of missing data
distributions and patterns (further described in the discussion
of the examples), including both text-based and graphical dis-
plays. There are good diagnostics provided for the convergence
of the data augmentation algorithms. The printed documenta-
tion, while extensive (164 pages) is light on examples of impu-
tation, instead focusing more on data augmentation and maxi-
mum likelihood (EM) based approaches. It provides an excellent
tutorial regarding missing data methods in general.

S-Plus has strong support for file input, including the ability
to connect directly to Excel, and to read files in a variety of
formats (including Access, dBASE, Gauss, Matlab, Paradox,
SAS, SPSS, Stata, and Systat).

The single-user license price for S-Plus 2000 Professional for
Windows is $2500; S-Plus 6.0 is expected to have similar pricing.
Discounted academic pricing is available including academic
site licenses.

MICE
TNO Prevention and Health
Public Health
Wassenaarseweg 56
P.O. Box 2215
2301 CE Leiden
The Netherlands
(31) 71 518 18 18
http://www.multiple-imputation.com

Multiple Imputation by Chained Equations (MICE) is a li-
brary distributed for S-Plus (described above) and R, a system
for statistical computation and graphics, whose language and
interface is very similar to S-Plus.

MICE provides a variety of imputation models, including
forms of predictive mean matching and regression methods,

logistic and polytomous regression, and discriminant analysis.
Nonmonotone missingness is handled by using chained equa-
tions (MCMC) to loop through all missing values. Extensive
graphical summaries of the MCMC process are provided. In ad-
dition, MICE allows users to program their own imputation func-
tions, which is useful for undertaking sensitivity analyses of dif-
ferent (possibly nonignorable) missingness models. The system
allows transformation of variables, and fine-grained control over
the choice of predictors in the imputation model. The imputation
step is carried out using the mice() function. For continuous
missing variables, MICE supports imputation using the norm
function (similar to SAS’ REGRESSION option), and the pmm
function (similar to SOLAS’ predictive mean matching). Com-
pleted datasets can be extracted using the complete() func-
tion, or can be run for each imputation using thelm.mids() or
glm.mids() function. Finally, results can be combined using
the pool() function.

Although computationally attractive, the chained equation ap-
proach implemented in MICE requires assumptions about the
existence of the multivariate posterior distribution used for sam-
pling, however, it is not always certain that such a distribution
exists (van Buuren et al. 1999). Like SOLAS, MICE uses a fixed
seed for random number generation, which must be overriden
during the imputation phase to avoid always generating the same
imputed values. It would be preferable to have this seed vary by
default, but allow the option to fix the seed to allow replication
of results.

Installation was straightforward, though automated addition
of packages under R is only supported on Unix systems. In ad-
dition to the mice package, under R, two additional add-on
packages were required (MASS and nnet). The documentation
was short (39 pages), terse (particularly regarding the imputa-
tion models) but clear. An example using the NHANES dataset
provided a summary of how to use the package. The manual
included the help pages for each function in the library.

S-Plus was described previously. R is free software for
Unix, Windows, and Macintosh that is distributed under a
GNU-style copyleft. More information can be found at the R
project web site: www.r-project.org. The MICE library is freely
available, and may be downloaded from the www.multiple-
imputation.com Web site.

Other Packages and Routines

Other packages that provide some support for imputa-
tion include SPSS, Joseph Schafer’s free software (macros
for S-Plus and stand-alone windows package NORM), Gary
King’s Amelia program, IVEware, HLM, and LISREL.
Joseph Schafer’s list of multiple imputation software routines
(http://www.stat.psu.edu/∼jls/misoftwa.html) and the list main-
tained by the Department of Statistics of TNO Prevention and
Health, (http://www.multiple-imputation.com) are helpful in
tracking the developments in this area.

SPSS requires the user to run the individual complete
data models and combine the results. Schafer’s software
are an excellent companion to his book, but they do
not support general purpose regression modeling. Amelia
(http://gking.harvard.edu/stats.shtml) implements the EMis al-
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> colSums(is.na(allison))
x1 y x2
0 0 5008

> apply(allison, 2, anyMissing)
x1 y x2
F F T

> round(100 * colMeans(is.na(allison)))
x1 y x2
0 0 50

> M <- miss(allison); plot(M); M
Summary of missing values

3 variables, 10000 observations, 2 patterns of missing values
1 variables (33%) have at least one missing value

5008 observations (50%) have at least one missing value
Breakdown by variable
V O name Missing % missing
1 3 x2 5008 50

V = Variable number used below, O = Original number (before sorting)
No missing values for variables: x1 y

Figure 2. Code to Describe Patterns of Missing Data for Artificial Data Example in S-Plus 6.0.

gorithm (King, Honaker, Joseph, and Scheve 2001) and performs
the imputation step, but does not provide support for analysis of
these imputed datasets or combination of the results. IVEware
(http://www.isr.umich.edu/src/smp/ive) by Raghunathan et al. is
a SAS version 6.12 callable routine built using the SAS macro
language. It extends multiple imputation to support complex
survey sample designs. HLM (hierarchical linear and nonlinear
modeling) version 5 supports the analysis of multiply-imputed
datasets, where multiple plausible datasets have been previously
created. LISREL 8.20 and later supports multiple imputation,
but the focus of this package is not on the regression models de-
scribed in this article. Because of the existence of more complete
implementations, these packages are not further discussed.

4. EXAMPLE: ARTIFICIAL DATA

We now replicate an artificial data example with missing co-
variates, as described by Allison (2000), to help illustrate how
multiple imputation models are fit using these packages. Let
X1, X2 and ε be multivariate normal with mean 0 and variance

covariance given by:

Σ =




1 0.5 0
0.5 1 0
0 0 1


 .

The true regression model is given by:

E[Y |X1, X2] = β0 + β1X1 + β2X2.

We generated 10,000 observations from the multivariate normal
distribution: Y = X1 + X2 + ε (i.e., β0 = 0, β1 = β2 = 1).
Following Allison’s example, we caused approximately half of
the values of X2 in this dataset to be missing, according to the
following mechanisms:

MCAR: X2 is missing with probability 0.5

MAR X1: X2 is missing if X1 < 0
MAR Y: X2 is missing if Y < 0
NI X2: X2 is missing if X2 < 0.

For approximately half the subjects Z = Zobs = (Y, X1, X2),
while for the balance Zobs = (Y, X1) and Zmis = X2. In this

Table 1. Parameter Estimates (and standard errors) From Artificial Datasets (true parameter values 1.00 and 1.00)

Missing Complete MI MI MI
mechanism Parameter case propensity regression MCMC

MCAR X1 1.00 (0.016) 1.40 (0.014) 1.01 (0.014) 1.01 (0.012)
X2 1.01 (0.016) 0.50 (0.016) 1.00 (0.013) 1.00 (0.015)

MAR X1 X1 1.04 (0.024) 1.54 (0.012) 1.02 (0.016) 1.01 (0.023)
X2 0.98 (0.016) 0.58 (0.019) 0.98 (0.014) 0.99 (0.015)

MAR Y X1 0.70 (0.015) 1.32 (0.013) 1.03 (0.014) 1.02 (0.015)
X2 0.71 (0.015) 0.83 (0.019) 1.00 (0.012) 1.00 (0.014)

NI X2 X1 1.00 (0.017) 1.28 (0.013) 1.15 (0.017) 1.16 (0.017)
X2 1.00 (0.025) 1.15 (0.027) 1.21 (0.026) 1.20 (0.020)
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Table 2. Estimated Fraction of Missing Information for the MCAR
Scenario for Two Replications (each with 10 imputations) of MICE PMM

and SAS REGRESSION

Parameter MICE 1 MICE 2 SAS 1 SAS 2

X1 0.25 0.20 0.21 0.47
X2 0.16 0.26 0.31 0.26

scenario, the complete case (CC) estimator (discarding all sub-
jects with X2 missing, the default option for missing data in
most computing packages) is unbiased for the MCAR, MAR
X1, and NI X2 mechanisms. For multiple imputation proce-
dures (assuming MAR missingness), the MCAR, MAR X1 and
MAR Y missingness scenarios should yield unbiased estimates
of the regression parameters. Allison (2000) showed that ear-
lier versions of SOLAS (that provided only a propensity score
method) had systematic severe bias when missingness depended
on X1, X2, or Y.

Figure 2 displays the commands in the S-Plus 6.0 missing
data library to describe patterns of missing data for the artificial
data example. The other packages provided similar exploratory
tools.

Table 1 displays the results from the imputation models us-
ing complete case, propensity (using SOLAS), predictive mean
matching (REGRESSION, using SOLAS), and MCMC meth-
ods (using SAS) for each of the four missingness scenarios. The
results, which are consistent with those of Allison, were simi-

lar when the imputation process was repeated on two occasions
with 10 imputations each, or with one exception, when different
programs (i.e., SOLAS, SAS, S-Plus 6.0, or MICE) were used.
A bug (which was reported and corrected) in the propensity
score routines in the beta release of SAS 8.2 yielded inaccurate
variance estimates under the MAR Y scenario.

We note that for the MCAR missingness scenario, the multiple
imputation estimators had slightly smaller standard errors than
the complete case estimator. As expected, the complete case es-
timator was unbiased unless missingness depended on Y . When
the MAR assumption was violated (NI X2), imputation based
methods were biased. In addition, the propensity score models
were biased in all scenarios other than MCAR; this method is
not recommended in this setting.

Table 2 displays estimates of the fraction of missing infor-
mation for the MCAR scenario for two replications of MICE
PMM and SAS REGRESSION. Both the parameters have more
than 20% missing information. Note that even with 10 imputa-
tions, there remains a great deal of variability in the estimates of
the fraction of missing information, though there was much less
variability in the parameter estimates for the regression model
in this example.

Figure 3 displays the code needed to fit the imputation model
for each of the packages. The data are assumed stored in a dataset
or object named allison.

SAS

proc mi data=allison out=miout nimpute=10 noprint;
monotone method=reg;
var y x1 x2;

proc reg data=miout outest=outreg covout noprint;
model y = x1 x2;
by _Imputation_;

proc mianalyze data=outreg;
var Intercept x1 x2;

run;

S-plus 6.0 Missing Data library

library(missing)
emstart <- emGauss(allison)
worstFraction(emstart)
start <- matrix(rep(emstart$paramIter[2,],10),nrow=10,byrow=T)
imp <- impGauss(allison,start=start,control=list(niter=200))
fit <- miEval(lm(y ˜ x1 + x2,data=imp))
result <- miMeanSE(fit)

MICE

library(mice)
imp <- mice(allison,imputationMethod="pmm",m=10,seed=456)
fit <- lm.mids(y ˜ x1 + x2, imp)
result <- pool(fit)

Figure 3. Code to Fit Models for Artificial Data Example.
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5. EXAMPLE: CHILD PSYCHOPATHOLOGY

We now consider an example with a missing outcome variable,
from a study of child psychopathology in urban and rural Con-
necticut (Zahner, Jacobs, Freeman, and Trainor 1993; Zahner,
Pawelkiewicz, DeFrancesco, and Adnopoz 1992; Zahner and
Daskalakis 1997; Goldwasser and Fitzmaurice 2001). The mea-
sure of psychopathology used in the study was the internalizing
problems scale (TXINT) of the Teacher’s Report Form (Achen-
bach 1991b, TRF). TXINT will be used as the outcome for a
linear regression model. TXINT ranges from 33 to 93 and can
be considered to be approximately normal (Goldwasser and Fitz-
maurice 2001).

In the study, 43% of teacher ratings on children were un-
observed. Missingness of this magnitude is not uncommon: a
similar rate was reported by Boyle et al. (1993) in their Ontario
Child Health Study. There were a variety of causes of missing-
ness for the teacher reports, including school district nonpar-
ticipation, parental refusal to give consent, and teacher nonre-
sponse. Fitzmaurice, Laird, and Zahner (1996) considered the
question of whether the missingness in this dataset is related to
the unobserved teacher’s rating, and found no evidence for this
hypothesis. Thus, the missing at random assumption appears to
be reasonable.

In addition to the teacher reports of psychopathology, par-
ents also reported on the child, using a parallel instrument. Such
multiple informant reports are commonly collected in services
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Figure 4. Distribution of Estimates of MOMSTRS Parameter Using
Different Number of Imputations (based on 50 replications).

research, particularly for measurements of child psychopathol-
ogy (Fitzmaurice, Laird, Zahner, and Daskalakis 1995; Offord
et al. 1996; Horton and Laird 1999). We denote this report, based
on the Child Behavioral Checklist (Achenbach 1991a, CBCL)
as PXINT. We include in our analysis the 2,501 children with
complete data on parent reports (of which 1,428 had complete
teacher reports). For questions where primary interest involves
the teacher report, this auxiliary information is extraneous to the
regression model, but it may be associated with the unobserved
teacher report. We will consider multiple imputation models that
incorporate this auxiliary information.

Predictors of psychopathology, reported by the parent, in-
cluded gender of the child (BOY: 1 = boy, 0 = otherwise);
age of the child (OLD: 0 = age 6 to 8, 1 = age 9–11); social
class (HIGH, MIDDLE, or LOW); area (RURAL, SUBURB,
SMALL city, or LARGE city); maternal distress (MOMSTRS);
child’s health (HLTHPRO: 0 = good health, 1 = poor health);
grade repetition (ACADPRO: 0 = no, 1 = yes); family stress
(FAMSTRS: 0 = no, 1 = yes); and belonging to a single parent
household (MOMSING: 0=father figure present, 1 = no father
figure present).

Here we consider TXINT to be the outcome Y, which is not
fully observed. X is fully observed, and consists of the above
predictors. PXINT is auxiliary information that may improve
the estimation of the missing values of TXINT.
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Figure 5. Distribution of Standard Error Estimates for MOMSTRS
Parameter Using Different Number of Imputations (based on 50 replica-
tions).
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In this setting (ordinary linear regression with fully observed
discrete predictors plus a continuous auxiliary variable), multi-
ple imputation is straightforward, due to the monotone nature
of the missingness. We fit three models: one using just the com-
plete cases, one that used multiple imputation, but not using the
auxiliary information, and a model using multiple imputation
with the auxiliary information (PXINT).

In this example, we noticed that with a small number of impu-
tations, some of the parameter estimates were not stable when we
repeated the imputation process with different starting seed val-
ues. We explored the variability of multiple imputation for this
example by conducting a small simulation study. We repeated
sets of imputations 50 times for each of the following numbers of
imputations (2,3,5,10,15,20,25,50), and described the variabil-
ity of the estimates of the MOMSTRS parameter. Figures 4 and
5 display boxplots of the results for the MOMSTRS parameter
and the estimated standard error for this parameter. The median
value for each set of imputations is approximately 1.5, but the
variability of the results for a particular imputation is quite high.
There is also increased variability in estimates of the standard er-
ror for this parameter. For the simulations with five imputations,
the empirical 95% confidence interval (CI) for the MOMSTRS
parameter from the 50 repetitions was (1.12,1.88). The size of
this interval is similar to the magnitude of the standard error of
this parameter, and could potentially affect the interpretation of
the results. Even when 10 imputations were used, the empir-
ical 95% CI was still large: (1.26,1.73). In contrast, when 50
imputations were conducted, the empirical 95% CI was smaller
(1.40,1.60).

The variability of these estimates suggest that more imputa-
tions be used to decrease the variability in these models. This
was true despite the fact that the fraction of missing information
for this parameter was estimated to be in the range of 0.40.

Table 3 displays the parameter estimates from these three
models for 50 imputations, using predictive mean matching in
SAS. In general, the parameter estimates are roughly consistent
in direction and magnitude, with similar estimates of standard
errors. Other packages yielded similar results, though SOLAS
allows a maximum of 10 imputations.

Despite the large number of imputations, the time involved in
fitting the multiple imputation models for this example was not
prohibitive. SAS, SOLAS, and MICE under S-Plus were run on

Table 3. Parameter Estimates (and standard error) for Child
Psychopathology Example Using Complete Case Analysis and Multiple

Imputation (using predictive mean matching, 50 imputations)

Parameter CC model MI (no auxiliary) MI (auxiliary)

INTERCEPT 46.95 (0.80) 46.92 (0.81) 47.08 (0.82)
LARGE 0.75 (0.73) 0.87 (0.74) 0.74 (0.71)
SMALL −1.51 (0.84) −1.39 (0.83) −1.58 (0.83)
SUBURB 0.65 (0.84) 0.65 (0.85) 0.47 (0.82)
LOW 2.98 (0.97) 3.07 (0.93) 3.05 (0.98)
MIDDLE 0.81 (0.60) 0.85 (0.59) 0.83 (0.57)
MOMSING −0.31 (0.79) −0.35 (0.81) −0.48 (0.81)
MOMSTRS 1.57 (0.74) 1.60 (0.76) 1.58 (0.74)
HLTHPRO 0.67 (0.54) 0.65 (0.53) 0.58 (0.53)
ACADPRO 3.40 (0.57) 3.41 (0.62) 3.34 (0.57)
CSEX −0.07 (0.54) −0.11 (0.54) −0.07 (0.53)
FAMSTRS 0.55 (0.56) 0.50 (0.58) 0.56 (0.55)

a Dell Dimension XPS B866, while MICE under R was run on
a 400Mhz Sun workstation. Five imputations were used in the
timing studies, though the timing was approximately linear in
the number of imputations. The models in SAS ran in 2 seconds
(regression), 3 seconds (propensity), and 8 seconds (MCMC).
The S-Plus missing data library using impGauss() required
13 seconds. The models in MICE under S-Plus ran in 13 sec-
onds (regression), and 23 seconds (PMM). MICE under R was
slightly slower (11 seconds and 82 seconds, respectively). These
results may be due to the use of interpreted code under R, which
was compiled to optimize certain functions under S-Plus, and
the use of different hardware platforms and operating systems.
SOLAS timing was not comparable; though the script language
automates the imputation process, fitting the regression model
required manual intervention by the analyst. This was unpleas-
ant for the simulations described in this article, but should not be
a factor in more standard settings. The predictive mean match-
ing imputation model required 15 seconds, and approximately
1 minute to describe and fit the regression models and combine
the results.

While these times are significantly slower than complete case
methods, they are not prohibitive, even in a dataset of this size
(2,501 observations with 13 variables). We concur with Rubin
(1996) that computational time to carry about multiple imputa-
tion is no longer a serious concern for all but the largest datasets.

6. DISCUSSION

Earlier, we introduced common concerns associated with
missing data: (1) loss of efficiency; (2) complication in data
handling and analysis; and (3) bias due to differences between
the observed and unobserved data. Multiple imputation is an an-
alytic approach that addresses these problems. Compared to the
complete case (CC) estimator, which discards partially observed
subjects, multiple imputation methods may be more efficient (at
the cost of making assumptions regarding the missingness dis-
tribution and the imputation model). Complications in data han-
dling and analysis have been greatly simplified by the existence
of easy-to-use software packages. If the MAR assumption is ten-
able, then multiple imputation may also provide less bias than
other approaches if the imputation model is correctly specified.
Although beyond the scope of this article, additional research is
needed to investigate the bias resulting from a poorly specified
imputation model (e.g., using a normal distribution when the
possibly missing variable is Bernoulli).

The previously described packages for multiple imputation,
though still evolving, are a useful addition to the analytic toolch-
est of practicing statisticians. They facilitate use of multiple im-
putation without having to resort to custom programming, te-
dious housekeeping, and additional calculations. Overall, these
packages provide an easy to use environment for imputation,
and allow this technique to be applied in many settings.

None of the packages is clearly superior, and there is a great
deal of overlap of their support for multiple imputation. SOLAS
provides a nice interface in a package that is geared primarily
toward imputation, but as a special-purpose package, it is limited
in its general purpose statistical coverage. It is fine for linear re-
gression but does not currently facilitate imputation analysis for
nonlinear models. SAS provides a general purpose environment
for imputation, but does not provide as fine-grained control of
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the imputation model. The S-Plus missing data library and MICE
are somewhat slower than the other two packages, but provide
support for a wide variety of regression models.

Extensive MCMC diagnostics are provided by both SAS and
MICE. Although these methods are quite attractive in modeling
nonmonotone missingness, they remain in large part a compli-
cated black box whose output can be difficult to interpret. We
note that because both of the examples used to illustrate the
methods featured a monotone missing data pattern, these rou-
tines were not fully explored in this review.

All of the packages allow the number of imputations to be
varied (though SOLAS limits this to 10). Since this number
is under the control of the analyst, and because it affects the
variability of results, it is important that the sensitivity of the
results to the number of imputations be explored. Given the
efficiency and speed of current computers, use of more than 10
imputations can easily be incorporated into most analyses.

The existing packages all allow the incorporation of auxiliary
information, which may improve the estimation of the impu-
tation model. Such models are often useful as an adjunct to a
complete case analysis, as an informal test of sensitivity to as-
sumptions required by complete data methods. These packages
(with the exception of MICE) do not allow the use of sensi-
tivity analysis of nonignorable nonresponse. Such models, as
described in detail by Rubin (1987, chap. 6), assess the robust-
ness of inference to different assumptions about missingness. As
various authors have noted, sensitivity analyses are quite com-
plicated, but incorporation of simple nonignorable missingness
models would be a useful addition to these packages. MICE is
the only package that allows the analyst to construct their own
imputation functions, implementing particular nonignorable as-
sumptions, but these new functions require additional program-
ming.

As a closing note, we offer the reminder that multiple im-
putation is not a panacea. Although it is a powerful and useful
tool applicable to many missing data settings, if not used care-
fully it is potentially dangerous. The existence of software that
facilitates its use requires the analyst to be careful about the
verification of assumptions, the robustness of imputation mod-
els, and the appropriateness of inferences. For more complicated
models (e.g., longitudinal or clustered data), this is even more
important. We reaffirm the sage advice of Barnard and Meng
(1999):

Cautions are needed, however, just as with any statistical methodology. It is clear
that if the imputation model is seriously flawed in terms of capturing the missing-
data mechanism, then so will be any analysis based on such imputations. This
problem can be avoided by carefully investigating each specific application, by
making the best use of knowledge and data about the missing-data mechanism,
and by performing various model checking procedures, in particular, posterior
predictive checks. This is not an additional burden for using Rubin’s method,
but rather a fundamental requirement for any general method that attempts to
produce statistically and scientifically meaningful results in the presence of
incomplete data.

[Received April 2001. Revised May 2001.]
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