Introduction to the Practice of Statistics using R:
Chapter 1

Nicholas J. Horton* Ben Baumer

March 10, 2013

Contents

1 Displaying distributions with graphs 2
 1.1 Histograms .. 2
 1.2 Stem (and leaf) plots ... 4
 1.3 Creating classes from quantitative variables 5
 1.4 Time plots .. 6

2 Displaying distributions with numbers 8
 2.1 Mean ... 8
 2.2 Median and quantiles ... 9
 2.3 Five number summary .. 10
 2.4 Interquartile range and outliers 10
 2.5 IQR rule and outliers ... 13
 2.6 Standard deviation and variance 14
 2.7 Linear transformations ... 15

3 Density curves and normal distributions 16
 3.1 Density curves .. 16
 3.2 Empirical (68/95/99.7) rule 18
 3.3 Normal distribution calculations 20
 3.4 Normal quantile plots .. 22

Introduction

This document is intended to help describe how to undertake analyses introduced as examples in the Sixth Edition of Introduction to the Practice of Statistics (2009) by David Moore, George McCabe and Bruce Craig. More information about the book can be found at http://bcs.whfreeman.com/ips6e/. This file as well as the associated knitr reproducible analysis source file can be found at http://www.math.smith.edu/~nhorton/ips6e

*Department of Mathematics and Statistics, Smith College, nhorton@smith.edu
This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach introductory statistics can be found in the mosaic package vignette (http://cran.r-project.org/web/packages/mosaic/vignettes/MinimalR.pdf).

To use a package within R, it must be installed (one time), and loaded (each session). The package can be installed using the following command:

```r
> install.packages('mosaic') # note the quotation marks
```

The # character is a comment in R, and all text after that on the current line is ignored. Once the package is installed (one time only), it can be loaded by running the command:

```r
> require(mosaic)
```

This needs to be done once per session. We also set some options to improve legibility of graphs and output.

```r
> trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice
> options(digits=3)
```

The specific goal of this document is to demonstrate how to replicate the analysis described in Chapter 1: Looking at Data (Distributions).

1 Displaying distributions with graphs

1.1 Histograms

Table 1.1 (page 8) displays service times (in seconds) for calls to a customer service center. We begin by reading the data and summarizing the variable.

```r
> calltimes = read.csv("http://www.math.smith.edu/ips6eR/ch01/eg01_004.csv")
> summary(calltimes)

       length          Min.     1st Qu.      Median        Mean         3rd Qu.       Max. 
     1.0000000 57.0000000 115.000000 189.000000 225.000000 28739.000000

> head(calltimes)
```
The `=` sign is one of the assignment operators in R (the other common one is `<-`). We use this to create a dataframe read from the internet using the `read.csv()` function to read a Comma-Separated Value file.

A total of 31492 service times are reported in the dataframe (or dataset) called `calltimes`. The `head()` function displays the first rows of the dataframe, which has a single variable called `length` (length of the service times, in seconds).

Creating a histogram using the defaults is straightforward, and requires specification of the variable and the dataset:

```r
> histogram(~ length, data=calltimes)
```

To match the output in Figure 1.4 (page 8), we can add some additional options that display counts rather than density, add more bins, restrict the x-axis limits, and improve the axis labels.
We begin by creating a new dataframe called `shortercalls` which matches the condition within the `subset()` function.

```r
> shortercalls = subset(calltimes, length <= 1200)
> histogram(~ length, type="count", breaks=121,
  xlab="Service time (seconds)", shortercalls)
```

We can calculate the proportion less than or equal to ten seconds (to replicate the text in Figure 1.4, on page 8).

```r
> tally(~ length <= 10, format="percent", data=calltimes)
```

```
TRUE    FALSE   Total
 7.63  92.37   100.00
```

1.2 Stem (and leaf) plots

Figure 1.6 (page 12) displays the stem and leaf plot in Minitab for a sample of n=80 observations from the call lengths dataset.

```r
> eightytimes = read.csv("http://www.math.smith.edu/ips6eR/ch01/ta01_001.csv")
> favstats(~ length, data=eightytimes)
```

```
min    Q1 median    Q3    max mean  sd n missing
 1 54.8    104   200 2631    197 342  80 0
```

```r
> with(eightytimes, stem(length))
```
The decimal point is 3 digit(s) to the right of the |

0 | 00000000000000011111111111111111111111111111111111112222222223333
0 | 5577
1 | 01
1 |
2 |
2 | 6

Many common functions (e.g. mean(), median(), favstats()) support a data= option to specify the dataframe on which to operate. For functions (such as stem() which do not, the with() function can achieve the same result, and avoids the use of the $ operator to reference a variable within a dataframe.

We can approximate the Minitab output by adding the scale= option:

```r
> with(eightytimes, stem(length, scale=2))
```

The decimal point is 2 digit(s) to the right of the |

0 | 00000111122344455556666667777888888999000122223344444556888
2 | 0001378993779
4 | 478
6 | 00
8 | 5
10 | 5
12 |
14 |
16 |
18 |
20 |
22 |
24 |
26 | 3

As always, it is critical to include a legend along with a stem and leaf plot. For the latter figure, this would be of the form:

Legend: 26 | 3 corresponds to a call of 2,630 seconds.

1.3 Creating classes from quantitative variables

```r
> iqscores = read.csv("http://www.math.smith.edu/ips6eR/ch01/ta01_003.csv")
> head(iqscores)
```
We can create classes using the rules defined on page 13 using the \texttt{cut()} command:

\begin{verbatim}
> iq = transform(iqscores, iqcat=cut(iq, right=FALSE,
breaks=c(75, 85, 95, 105, 115, 125, 135, 145, 155)))
> tally(~ iqcat, data=iqscores)
\end{verbatim}

\begin{verbatim}
\begin{tabular}{lcccccc}
[75,85) & [85,95) & [95,105) & [105,115) & [115,125) & [125,135) & [135,145) \\
2 & 3 & 10 & 16 & 13 & 10 & 5 \\
[145,155) & Total \\
1 & 60 \\
\end{tabular}
\end{verbatim}

Here we demonstrate use of the \texttt{c()} function to glue together a vector (a one-dimensional array) with the breakpoints).

1.4 Time plots

\begin{verbatim}
> head(mississippi)
\end{verbatim}

\begin{verbatim}
\begin{tabular}{lrr}
year & discharge \\
1 & 1954 & 290 \\
2 & 1955 & 420 \\
3 & 1956 & 390 \\
4 & 1957 & 610 \\
5 & 1958 & 550 \\
6 & 1959 & 440 \\
\end{tabular}
\end{verbatim}

\begin{verbatim}
> summary(mississippi)
\end{verbatim}
We can replicate Figure 1.10 (a) on page 19 using the `histogram()` command with specification of the breaks.

```r
> histogram(~ discharge, breaks=seq(200, 900, by=100),
           xlab="Mississippi River discharge (cubic km)", data=mississippi)
```

We can replicated Figure 1.10 (b) on page 19 using the `xyplot()` command with specification of the Line and Regression type.

```r
> xyplot(discharge ~ year, type=c("l", "r"),
        ylab="Mississippi River discharge (cubic km)", data=mississippi)
```
Other options for `type=` include Points and Smooth:

```r
> xyplot(discharge ~ year, type=c("p", "smooth"),
       ylab="Mississippi River discharge (cubic km)", data=mississippi)
```

2 Displaying distributions with numbers

2.1 Mean

We begin by reading in the dataset, and calculating the mean highway mileage of the two seaters:
> origmileage = read.csv("http://www.math.smith.edu/ips6eR/ch01/ta01_010.csv", stringsAsFactor=FALSE)
> mean(~ Hwy, data=subset(origmileage, Type="T"))

[1] 24.7

> favstats(~ Hwy, data=subset(origmileage, Type="T"))

 min Q1 median Q3 max mean sd n missing
13 19 23 28 66 24.7 10.8 21 0

The use of stringsAsFactors ensures that the Type variable can be referenced as a character string.

As described on page 30, we drop the outlier as the authors suggest, with the justification that it appears to be completely different from the other cars.

> mileage = subset(origmileage, Hwy < 60)
> twoseat = subset(mileage, Type="T")
> mean(~ Hwy, data=twoseat)

[1] 22.6

> favstats(~ Hwy, data=twoseat)

 min Q1 median Q3 max mean sd n missing
13 18.5 23 26.5 32 22.6 5.29 20 0

The dataset with the outlier dropped will be used for all further analyses.

2.2 Median and quantiles

The favstats() function displays a variety of useful quantities, though other functions are also available to calculate specific statistics.

> favstats(~ Hwy, data=twoseat)

 min Q1 median Q3 max mean sd n missing
13 18.5 23 26.5 32 22.6 5.29 20 0

> median(~ Hwy, data=twoseat)

[1] 23

> with(twoseat, quantile(Hwy, probs=c(0.5)))

50%

23
This is an example of the use of `with()` to make a variable within a dataframe accessible to the `quantile()` function.

The output matches the description in Example 1.16 (page 35).

The default behavior in R for the calculation of quantiles does not match that of SPSS and Minitab. For those with a fetish for accuracy, the results displayed in part (b) of Figure 1.18 (page 36) can be replicated using the `type=6` option to `quantile()`:

```r
> with(twoseat, quantile(Hwy, probs=c(0.25, 0.75), type=6))
25% 75%
17.5 27.5
```

2.3 Five number summary

```r
> favstats(~ Hwy, data=twoseat)
                  min    Q1 median     Q3    max   mean     sd    n missing
13  18.5  23  26.5  32 22.6  5.29  20  0
> min(~ Hwy, data=twoseat)
[1] 13
> max(~ Hwy, data=twoseat)
[1] 32
> with(twoseat, fivenum(Hwy))
[1] 13 18 23 27 32
```

Note that the five number summary is calculating the lower and upper hinges, rather than Q1 and Q3.

For pedagogical purposes, we often find it simpler to just introduce `favstats()` for calculations of this sort.

2.4 Interquartile range and outliers

We can calculate the IQR, as well as display boxplots.

```r
> with(twoseat, IQR(Hwy))
[1] 8
> bwplot(~ Hwy, data=twoseat)
```
This matches the display for two seater cars on page 37.

We generally encourage students to use boxplots when comparing two of more groups, as it’s not a particularly compelling display for a single population.

```r
> bwplot(Hwy ~ Type, data=mileage)
```

To generate all four groups from Figure 1.19 (page 37), we need to transform the dataset into *tall* format. This is a somewhat pesky data management task that is best done by instructors (rather than students) early on in a course.

```r
> head(mileage)
```

```
Type City Hwy
1   T   17  24
```
> # create a vector of locations
> Location = c(rep("Hwy", nrow(mileage)), rep("City", nrow(mileage)))
> # create a vector of car types
> CarType = with(mileage, c(Type, Type))
> # create a vector of miles per gallon
> MPG = with(mileage, c(Hwy, City))
> # glue them all together
> figure1.19 = with(mileage, data.frame(CarType, MPG, Location))
> head(figure1.19)
>
<table>
<thead>
<tr>
<th>CarType</th>
<th>MPG</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>24</td>
<td>Hwy</td>
</tr>
<tr>
<td>T</td>
<td>28</td>
<td>Hwy</td>
</tr>
<tr>
<td>T</td>
<td>28</td>
<td>Hwy</td>
</tr>
<tr>
<td>T</td>
<td>25</td>
<td>Hwy</td>
</tr>
<tr>
<td>T</td>
<td>25</td>
<td>Hwy</td>
</tr>
<tr>
<td>T</td>
<td>20</td>
<td>Hwy</td>
</tr>
</tbody>
</table>

> # cleanup
> rm(Location, CarType, MPG)
> bwplot(MPG ~ Location | CarType, data=figure1.19)
2.5 IQR rule and outliers

We can flag outliers using the 1.5 IQR rule, for the call times dataset (as displayed in Figure 1.20):

```
> bwplot(~ length, data=eightytimes)
```

![Boxplot showing outliers](image)

We can also display information regarding the outliers:

```r
> threshold = 1.5 * with(eightytimes, IQR(length))
> threshold
[1] 217

> q1 = with(eightytimes, quantile(length, probs=0.25))
> q1
 25%
54.8

> q3 = with(eightytimes, quantile(length, probs=0.75))
> q3
 75%
200

> # outlier if either condition matches
> eightytimes = transform(eightytimes,
                        outliers = (length < q1 - threshold) | (length > q3 + threshold))
```

Introduction to the Practice of Statistics using R: Chapter 1
2.6 Standard deviation and variance

It’s straightforward to calculate the variance and standard deviation directly within R.

```r
> x = c(1792, 1666, 1362, 1614, 1460, 1867, 1439)
> n = length(x)
> n
[1] 7
> mean(x)
[1] 1600
> myvar = sum((x - mean(x))^2) / (n - 1)
> myvar
[1] 35812
> sqrt(myvar)
[1] 189
```

But it’s simpler to use the built-in commands:
> var(x)

[1] 35812

> sd(x)

[1] 189

These match the values calculated on page 41.

Normally, we’ll access variables in a dataframe, which requires use of the `data=` operator and the `with()` function (or use of `with()`).

2.7 Linear transformations

We replicate the analyses from example 1.22 (page 46). Instead of operating directly on the vector, we’ll create a simple dataframe.

```r
> score = c(1056, 1080, 900, 1164, 1020)
> grades = data.frame(score)
> mean(~ score, data=grades)

[1] 1044

> sd(~ score, data=grades)

[1] 96.4

> grades = transform(grades, points = score / 4)
> grades

     score points
1   1056   264
2   1080   270
3    900   225
4   1164   291
5   1020   255

> mean(~ points, data=grades)

[1] 261

> sd(~ points, data=grades)

[1] 24.1
```
3 Density curves and normal distributions

3.1 Density curves

```r
> rainwater = read.csv("http://www.math.smith.edu/ips6eR/ch01/ex01_036.csv")
> names(rainwater)
[1] "ph"
> densityplot(~ ph, data=rainwater)
```

We can adjust how “smooth” the curve will be. Here we make the bandwidth (see page 71) narrower, which will make the curve less smooth.

```r
> densityplot(~ ph, adjust=0.5, data=rainwater)
```
Here we make the bandwidth wider, which will make the curve smoother.

```r
> densityplot(~ ph, adjust=2, data=rainwater)
```

The defaults are generally satisfactory. We can also overlay a normal distribution on top of a histogram.

```r
> xhistogram(~ ph, fit='normal', data=rainwater)
```

Loading required package: MASS

Introduction to the Practice of Statistics using R: Chapter 1
3.2 Empirical (68/95/99.7) rule

While it’s straightforward to use R to calculate the probabilities for any distribution, many times the empirical (or 68/95/99.7) rule can be used to get a rough sense of probabilities.

```r
> xpnorm(1, mean=0, sd=1)
```

If \(X \sim N(0,1) \), then

\[
P(X \leq 1) = P(Z \leq 1) = 0.8413
\]

\[
P(X > 1) = P(Z > 1) = 0.1587
\]

[1] 0.841
Because it is symmetric, we observe that approximately $2 \times 0.1587 = 0.317$ (or a little less than $1/3$) of the density for a normal distribution is more than 1 standard deviation from the mean.

\[
\text{If } X \sim N(0,1), \text{ then }
\]

\[
P(X \leq 2) = P(Z \leq 2) = 0.9772
\]

\[
P(X > 2) = P(Z > 2) = 0.0228
\]

Similarly, we observe that approximately $2 \times 0.0228 = 0.046$ (or a little less than 5\%) of the density for a normal distribution is more than 2 standard deviations from the mean.

\[
\text{If } X \sim N(0,1), \text{ then }
\]

\[
P(X \leq 3) = P(Z \leq 3) = 0.9987
\]

\[
P(X > 3) = P(Z > 3) = 0.0013
\]
Only a small proportion (2∗0.0013 = 0.003) of the density of a normal distribution is more than 3 standard deviations from the mean.

We also know that the probability of a value above the mean is 0.5, since the distribution is symmetric.

3.3 Normal distribution calculations

The `xpnorm()` function can be used to calculate normal probabilities (look ma: no Table!). More formally, it calculates the probability that a random variable X takes on probability of x or less given a distribution with mean μ and standard deviation σ.

Example 1.27 (page 63) calculates the probability that a student had a score of 820 on the SAT, given that SAT scores are approximately normal with mean $\mu = 1026$ and standard deviation $\sigma = 209$:

```r
> xpnorm(820, mean=1026, sd=209)
```

If $X \sim N(1026, 209)$, then

$P(X \leq 820) = P(Z \leq -0.986) = 0.1622$

$P(X > 820) = P(Z > -0.986) = 0.8378$

[1] 0.162
This matches the value of 0.8379 at the bottom of the page.

Other functions can be used to work backwards to find a quantile in terms of a probability. Example 1.32 (page 67) asks to find the quantile of the distribution which corresponds to the top 10%:

\[
> \text{xqnorm(.90, mean=505, sd=110)}
\]

\[
P(X \leq 645.970672209906) = 0.9
\]

\[
P(X > 645.970672209906) = 0.1
\]

[1] 646

The value of 646 matches the value from the calculations from the Table.
3.4 Normal quantile plots

We can replicate Figure 1.34 (normal quantile plot of the breaking strengths of wires, page 69) using the `qqnorm()` command:

```r
> wires = read.csv("http://www.math.smith.edu/ips6eR/ch01/eg01_011.csv")
> names(wires)
[1] "strength"
> with(wires, qqnorm(strength))
```

![Normal Q-Q Plot](image)