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14 

14-1 

Logistic Regression 

14.1  The Logistic 
Regression Model 

14.2  Inference for 
Logistic Regression 

Introduction 
The simple and multiple linear regression methods we studied in Chapters 10  
and 11 are used to model the relationship between a quantitative response 
variable and one or more explanatory variables. In this chapter, we describe 
similar methods that are used when the response variable is a categorical  
variable with two possible values, such as a student applicant receives or does 
not receive financial aid, a patient lives or dies during emergency surgery, or 
your cell phone coverage is acceptable or not. 

In general, we call the two outcomes of the response variable “success’’ 
and “failure’’ and represent them by 1 (for a success) and 0 (for a failure). The 
mean is then the proportion of 1s, p  5  P(success). If our data are n indepen
dent observations, we have the binomial setting. What is new in this chapter 
is that the data now include at least one explanatory variable x and the prob
ability p  depends on the value of x. For example, suppose that we are studying 
whether a student applicant receives (y  5 1) or is denied (y  5 0) financial aid. 
Here, p is the probability that an applicant receives aid, and possible explana
tory variables include (a) the financial support of the parents, (b) the income 
and savings of the applicant, and (c) whether the applicant has received finan
cial aid before. Just as in multiple linear regression, the explanatory variables 
can be either categorical or quantitative. Logistic regression is a statistical 
method for describing these kinds of relationships.1 

LOOK BACK 

binomial  
setting,  
p. 312 
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14.1 The Logistic Regression Model

When you complete 
this section, you will 
be able to:

● Find the odds from a single probability.
● Describe the statistical model for logistic regression with a single 

explanatory variable.
● Find the odds ratio for comparing two proportions.

Binomial distributions and odds
In Chapter 5 we studied binomial distributions, and in Chapter 8 we learned 
how to do statistical inference for the proportion p of successes in the bino-
mial setting. We start with a brief review of some of these ideas that we will 
need in this chapter.

Recommend the service. Exercise 8.16 (page 501) describes a survey of  
250 customers of an automobile dealership. The customers were asked if 
they would recommend the service department to a friend. The number who 
responded Yes was 210.

In the notation of Chapter 5, p is the proportion of customers in the 
population of customers from which the sample was drawn who would 
respond Yes to the question. The number of customers who would respond 
Yes in an simple random sample (SRS) of size n has the binomial distribution 
with parameters n and p. The sample size of customers is n 5 250, and the 
number who responded Yes is the count X 5 210. The sample proportion is

EXAMPLE 14.1

p⁄ 5
210
250

5 0.84

LOOK BACK

odds, p. 633

Logistic regressions work with odds rather than proportions. The odds are 
simply the ratio of the proportions for the two possible outcomes. If p⁄  is the pro-
portion for one outcome, then 1 2 p⁄  is the proportion for the second outcome:

odds 5
p⁄

1 2 p⁄

A similar formula for the population odds is obtained by substituting p for p⁄  
in this expression.

Odds of responding Yes. For the customer service data, the proportion of custom-
ers who would recommend the service in the sample of customers is p⁄ 5 0.84, so 
the proportion of customers who would not recommend the service department

EXAMPLE 14.2

1 2 p⁄ 5 1 2 0.84 5 0.16

Therefore, the odds of recommending the service department are

odds 5
p⁄

1 2 p⁄

5
0.84
0.16

5 5.25
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When people speak about odds, they often round to integers or fractions. 
If we round 5.25 to 5 5 5y1, we would say that the odds are approximately 
5 to 1 that a customer would recommend the service to a friend. In a similar 
way, we could describe the odds that a customer would not recommend the 
service as 1 to 5.

UsE YOUr KnOWLEdgE 14.1 Odds of drawing a heart. If you deal one card from a standard deck, 
the probability that the card is a heart is 13y52 5 1y4.

(a) Find the odds of drawing a heart.

(b) Find the odds of drawing a card that is not a heart.

14.2 Given the odds, find the probability. If you know the odds, you can 
find the probability by solving the odds equation for the probability. 
So, p⁄ 5 oddsy(odds 1 1). If the odds of an outcome are 2.5 (or 5 to 2), 
what is the probability of the outcome?

Odds for two groups
In Example 8.11 (page 507), we compared the use of Instagram for young 
women and men. Using the methods of Chapter 8, we compared the proportions 
of female and male Instagram users with a confidence interval in (page 507)  
or significance test (page 512).

Comparing the proportions of female and male Instagram users. Figure 14.1 
contains output from JMP for this comparison. The sample proportion of 
women who are Instagram users is given as 61.08%, and the sample propor-
tion for men is 43.98%. The difference is 0.170951, and the 95% confidence 
interval is (0.111429, 0.2292). We can summarize this result by saying, “In 
this sample of young adults, the percent of women who use Instagram is 
17% higher the percent of men who use Instagram. This difference is statis-
tically significant (P , 0.0001).’’

Another way to analyze these data is to use logistic regression. The explan-
atory variable is sex, a categorical variable. To use this in a regression (logistic 
or otherwise), we need to use a numeric code. The usual way to do this is with 
an indicator variable. For our problem, we will use an indicator of whether or 
not the adult is a woman:

EXAMPLE 14.3

INSTAGR

LOOK BACK

indicator 
variable,  

p. 610 x 5 51 if the person is a woman
0 if the person is a man

The response variable is the proportion of Instagram users. For use in a 
logistic regression, we perform two transformations on this variable. First, we 
convert to odds. For women,

odds 5
p⁄

1 2 p⁄

5
0.6108

1 2 0.6108

5 1.5694
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FIgUrE 14.1 JMP output for the comparison of the proportions of female and male 
Instagram users, Example 14.3.
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Similarly, for men we have

odds 5
p⁄

1 2 p⁄

5
0.4398

1 2 0.4398

5 0.7851

UsE YOUr KnOWLEdgE 14.3 Energy drink commercials. A study was designed to compare two 
energy drink commercials. Each participant was shown the com-
mercials, A and B, in random order and asked to select the better 
one. There were 150 women and 140 men who participated in the 
study. Commercial A was selected by 71 women and by 87 men. Find 
the odds of selecting Commercial A for the men. Do the same for the 
women.

14.4 Find the odds. Refer to the previous exercise. Find the odds of 
selecting Commercial B for the men. Do the same for the women.
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Model for logistic regression 
In simple linear regression, we modeled the mean my of the response  
variable y as a linear function of the explanatory variable: m  5  b0  1  b1x. 
When y is just 1 or 0 (success or failure), the mean is the probability p of  
a success. Logistic regression models the mean p in terms of an explanatory  
variable x. We might try to relate p and x as in simple linear regression:   
p  5  b0  1  b1x. Unfortunately, this is not a good model. Whenever b1  Þ 0, 
extreme values of x will give values of b0  1  b1x that fall outside the range  
of possible values of p,0 #  p  # 1. 

log odds,  
logit 

The logistic regression solution to this difficulty is to transform the odds 
(py(1 2  p)) using the natural logarithm. We use the term log odds or logit for 
this transformation. 

As we did with linear regression, we use y for the response variable. So for 
women, 

y  5 log(odds) 5 log(1.5694) 5 0.4507 

and for men, 

y  5 log(odds) 5 log(0.7851) 5 20.2419 

In these expressions for the log odds, we use y as the observed value of the 
response variable, the log odds of using Instagram. We are now ready to build 
the logistic regression model. 

We model the log odds as a linear function of the explanatory variable: 

S Dlog
p 

5 b0 1 b1x1 2 p 

Figure 14.2 graphs the relationship between p and x for some different values 
of b0 and b1. For logistic regression, we use natural logarithms. There are 
tables of natural logarithms, and many calculators have a built-in function for 
this transformation. 
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FIgUrE 14.2 Plot of p versus x for different logistic regression models. 
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UsE YOUr KnOWLEdgE 14.5 Find the odds. Refer to Exercise 14.3. Find the log odds for the men 
and the log odds for the women.

14.6 Find the odds. Refer to Exercise 14.4. Find the log odds for the men 
and the log odds for the women.

LOgIsTIC RegRessIOn MOdeL

The statistical model for logistic regression is

log S p

1 2 pD 5 b0 1 b1x

where p is a binomial proportion and x is the explanatory variable. The 
parameters of the logistic regression model are b0 and b1.

EXAMPLE 14.4 Model for Instagram users. For our Instragram example, there are n 5 1069 
young persons in the sample. The explanatory variable is sex, which we have 
coded using an indicator variable with values x 5 1 for women and x 5 0 
for men. The response variable, y, is also an indicator variable. Thus, each 
person either is an Instagram user or is not an Instagram user. Think of a 
process of selecting a young person at random and recording y and x. The 
model says that the probability, p, that this person is an Instagram user can 
depend upon the user’s sex (x 5 1 or x 5 0). So there are two possible values 
for p—say, pwomen and pmen.

Logistic regression with an indicator explanatory variable is a very special 
case. It is important because many multiple logistic regression analyses focus 
on one or more such variables as the primary explanatory variables of interest. 
For now, we use this special case to understand a little more about the model.

The logistic regression model specifies the relationship between p and x. 
Because there are only two values for x, we write both equations. For women,

logS pwomen

1 2 pwomen
D 5 b0 1 b1

and for men,

logS pmen

1 2 pmen
D 5 b0

Note that there is a b1 term in the equation for women because x 5 1, but it is 
missing in the equation for men because x 5 0.

Fitting and interpreting the logistic regression model
In general, the calculations needed to find estimates b0 and b1 for the 
parameters b0 and b1 are complex and require the use of software. When the 
explanatory variable has only two possible values, however, we can easily find 
the estimates. This simple framework also provides a setting where we can 
learn what the logistic regression parameters mean.
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EXAMPLE 14.5 Log odds for Instagram use. In the Instagram example, we found the log 
odds for women,

logS p⁄women

1 2 p⁄women
D 5 0.4507

and for men,

logS p⁄men

1 2 p⁄men
D 5 20.2419

The logistic regression model for women is

logS pwomen

1 2 pwomen
D 5 b0 1 b1

and for men it is

logS pmen

1 2 pmen
D 5 b0

To find the estimates b0 and b1, we match the female and male model 
equations with the corresponding data equations. Thus, we see that the 
estimate of the intercept b0 is simply the log odds for the men:

b0 5 20.2419

and the estimate of the slope is the difference between the log odds for the 
women and the log odds for the men:

b1 5 0.4507 2 (20.2419) 5 0.6926

The fitted logistic regression model is

log(odds) 5 20.2419 1 0.6926x

The slope in this logistic regression model is the difference between the log 
odds for men and the log odds for women. Most people are not comfortable 
thinking in the log odds scale, so interpretation of the results in terms of the 
regression slope is difficult. Usually, we apply a transformation to help us. 
With a little algebra, it can be shown that

oddswomen

oddsmen
5 e0.6926 5 1.999

odds ratio

14_Moore_13387_Ch14_01-26.indd   7 06/10/16   9:46 PM

The transformation e0.6926 undoes the logarithm and transforms the logistic 
regression slope into an odds ratio—in this case, the ratio of the odds that a 
woman uses Instagram to the odds that a man uses Instagram. In other words, 
we can multiply the odds for men by the odds ratio to obtain the odds for women:

oddswomen 5 1.999 3 oddsmen

In this case, we would say that the odds for women are about twice the odds 
for men.

Notice that we have chosen the coding for the indicator variable so that the 
regression slope is positive. This will give an odds ratio that is greater than 1.  
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Had we coded men as 1 and women as 0, the sign of the slope would be 
reversed and the odds ratio would be e20.6926 5 0.500. The odds for men are 
about half of the odds for women.

Logistic regression with an explanatory variable having two values is a very 
important special case. Here is an example where the explanatory variable is 
quantitative.

EXAMPLE 14.6

MOVIES

Is a movie going to be profitable? The MOVIES data file includes both 
the movie’s budget and the total U.S. revenue for 76 recent movies. For 
this example, we will classify each movie as “profitable’’ (y 5 1) if U.S. 
revenue is larger than the budget and not profitable (y 5 0) otherwise. 
Profit is our response variable. The data file contains several explana-
tory variables, but we will focus here on the natural logarithm of the 
opening weekend revenue. Figure 14.3 is a scatterplot of the data with a  
scatterplot smoother. The probability that a movie is profitable increases 
with the log opening weekend revenue. Let’s fit the logistic regression 
model

log S p

1 2 pD 5 b0 1 b1x

where p is the probability that the movie is profitable and x is the log 
opening-weekend revenue. The model for estimated log odds fitted by 
software is

log(odds) 5 b0 1 b1x 5 22.56 1 1.125x

The odds ratio is eb1 5 3.08. This means that if log opening weekend 
revenue x increases by one unit (roughly $2.71 million), the odds that the 
movie will be profitable increase by a factor of 3.08.

−0.25

0.00

0 1 2 3
Log (opening)

Profit vs. log (opening)

4 5 6

0.25

0.50

Pr
of

it

0.75

1.00

1.25

Smooth

FIgUrE 14.3 Scatterplot of profit (Y 5 1, N 5 0) versus the log opening weekend 
revenue Log (opening) with a smooth function, Example 14.6.
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UsE YOUr KnOWLEdgE 14.7 Find the logistic regression equation and the odds ratio. Refer to 
Exercises 14.3 and 14.5. Find the logistic regression equation and the 
odds ratio.

14.8 Find the logistic regression equation and the odds ratio. Refer to 
Exercises 14.4 and 14.6. Find the logistic regression equation and the 
odds ratio.

14 . 2 Inference for Logistic Regression

When you complete 
this section, you will 
be able to:

For a logistic regression with a single explanatory variable, use software to:
● Identify the estimates of the regression parameters and write the 

equation for the fitted model.
● Identify the 95% confidence interval for the regression slope and the 

significance test results for the null hypothesis that the slope is zero.
● Identify and interpret the odds ratio and the 95% confidence interval for 

the odds ratio.

For a logistic regression with several explanatory variables, use software to:
● Identify the estimates of the regression parameters and write the 

equation for the fitted model.
● Identify the significance test results for the null hypothesis that all 

regression slopes are zero.
● Identify the 95% confidence intervals for the regression coefficients 

and the significance test results for the null hypothesis that each of the 
regression coefficients is zero.

● Identify and interpret the odds ratio and the 95% confidence interval for 
the odds ratio for each explanatory variable.

Statistical inference for logistic regression is very similar to statistical infer-
ence for simple linear regression. We calculate estimates of the model param-
eters and standard errors for these estimates. Confidence intervals are formed 
in the usual way, but we use standard Normal z*-values rather than critical 
values from the t distributions. The ratio of the estimate of the slope to the 
standard error is the basis for hypothesis tests. Often, the test statistics are 
given as the squares of these ratios, and in this case, the P-values are obtained 
from the chi-square distribution with 1 degree of freedom.

Confidence intervals and significance tests

COnfIdenCe InTeRvALs And sIgnIfICAnCe TesTs fOR LOgIsTIC 
RegRessIOn PARAMeTeRs

A level C confidence interval for the slope b1 is

b1 6 z*SEb1
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The ratio of the odds for a value of the explanatory variable equal to x 1 1  
to the odds for a value of the explanatory variable equal to x is the odds 
ratio.

A level C confidence interval for the odds ratio eb1 is obtained by trans-
forming the confidence interval for the slope:

(eb12z*SEb1, eb11z*SEb1)

In these expressions, z* is the value for the standard Normal density curve 
with area C between 2z* and z*.

To test the hypothesis H0: b1 5 0, compute the test statistic

z 5
b1

SEb1

The P-value for the significance test of H0 against Ha: b1 Þ 0 is computed 
using the fact that, when the null hypothesis is true, z has approximately 
a standard Normal distribution.

Note that, unlike other standard errors that we have used, the computation of 
standard errors for logistic regression parameters is complicated and requires 
software. This test statistic z is sometimes called a Wald statistic. Output 
from some statistical software reports the significance test result in terms of 
the square of the z statistic.

Wald statistic

LOOK BACK

chi-square 
statistic,  

p. 534

X 2 5 z2

This statistic is called a chi-square statistic. When the null hypothesis is true, it has 
a distribution that is approximately a 2x  distribution with 1 degree of freedom, 
and the P-value is calculated as P( 2x  2$ X ). Because the square of a standard 
Normal random variable has a 2x  distribution with 1 degree of freedom, the  
z statistic and the chi-square statistic give the same results for statistical inference.

We have expressed the hypothesis-testing framework in terms of the slope b1 
because this form closely resembles what we studied in simple linear regression. 
In many applications, however, the results are expressed in terms of the odds 
ratio. A slope of 0 is the same as an odds ratio of 1, so we often express the null 
hypothesis of interest as “the odds ratio is 1.’’ This means that the two odds are 
equal and the explanatory variable is not useful for predicting the odds.

software output. Figure 14.4 gives the output from Minitab for the Insta-
gram example described in Example 14.5. Note that the varible SEXNUM in 
the output has values 1 for women and 0 for men. The parameter estimates 
are given as b0 5 20.2418 and b1 5 0.692. The standard errors are 0.0873 
and 0.1240, respectively.

The 95% confidence interval for the slope is

EXAMPLE 14.7

INSTAGR

b1 6 z*SEb1
5 0.692 6 (1.96)(0.1240)

5 0.692 6 0.24304

We are 95% confident that the slope is between 0.449 and 0.935. Note that 
Minitab reports the significance test results using a chi-squared statistic.
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FIgUrE 14.4 Logistic 
regression output from  
Minitab for the Instagram data, 
Example 14.7.

The output also provides the odds ratio 1.9986 and a 95% confidence 
interval, 1.5663 to 2.5502. For this problem we would report, “Women  
are more likely than men to be Instagram users (odds ratio 5 2.00, 95%  
CI 5 1.57 to 2.55).’’

Note that there are some differences between the estimates given by 
Minitab in Figure 14.4 and the calculations that we performed in Exercise 14.5.  
These generally occur only in the last digit and are due to roundoff errors in 
our calculations.

UsE YOUr KnOWLEdgE 14.9 Verify the calculation of the odds ratio. Refer to Example 14.7. 
Verify that the odds ratio, 1.9986, is eb1. (Use b1 5 0.69245 for your 
calculation.)

14.10 Verify the calculation of the confidence interval. Refer to 
Example 14.7. Verify that the 95% confidence interval for the odds 
ratio, 1.57 to 2.55, is

(eb12z*SEb1, eb11z*SEb1)

where z* 5 1.96. Explain why we use this value of z* in the calculation.

In applications such as these, it is standard to use 95% for the confidence 
coefficient. With this convention, the confidence interval gives us the result of 
testing the null hypothesis that the odds ratio is 1 for a significance level of 0.05.  
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If the confidence interval does not include 1, we reject H0 and conclude that 
the odds for the two groups are different; if the interval does include 1, the 
data do not provide enough evidence to distinguish the groups in this way.

The following example is typical of many applications of logistic regression. 
Here, there is a designed experiment with five different values for the explanatory 
variable.

EXAMPLE 14.8

INSECTS

An insecticide for aphids. An experiment was designed to examine how well 
the insecticide rotenone kills an aphid, called Macrosiphoniella sanborni, 
that feeds on the chrysanthemum plant.2 The explanatory variable is the 
concentration (in log of milligrams per liter) of the insecticide. At each 
concentration, approximately 50 insects were exposed. Each insect was 
either killed or not killed. We summarize the data using the number killed. 
The response variable for logistic regression is the log odds of the proportion 
killed. Here are the data:

Concentration (log) Number of insects Number killed

0.96 50  6

1.33 48 16

1.63 46 24

2.04 49 42

2.32 50 44

If we transform the response variable (by taking log odds) and use least 
squares, we get the fit illustrated in Figure 14.5. The logistic regression fit is 
given in Figure 14.6. It is a transformed version of Figure 14.5 with the fit 
calculated using the logistic model.
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FIgUrE 14.5 Plot of log odds 
of percent killed versus log 
concentration for the insecticide 
data, Example 14.8.
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FIgUrE 14.6 Plot of the percent killed versus log concentration with the logistic fit for 
the insecticide data, Example 14.8.

One of the major themes of this text is that we should present the results  
of a statistical analysis with a graph. For the insecticide example, we have 
done this with Figure 14.6, and the results appear to be convincing. But 
suppose that rotenone has no ability to kill Macrosiphoniella sanborni. What is 
the chance that we would observe experimental results at least as convincing 
to what we observed if this supposition were true? The answer is the P-value 
for the test of the null hypothesis that the logistic regression slope is zero. If 
this P-value is not small, our graph may be misleading. Statistical inference 
provides what we need.

EXAMPLE 14.9

INSECTS

software output. Figure 14.7 gives the output from Minitab, SPSS, and JMP 
for the logistic regression analysis of the insecticide data. The model is

log S p

1 2 pD 5 b0 1 b1x

where the values of the explanatory variable x are 0.96, 1.33, 1.63, 2.04, 
and 2.32. From the output in Minitab and SPSS, we see that the fitted 
model is

log(odds) 5 b0 1 b1x 5 24.89 1 3.11x

This is the fit that we plotted in Figure 14.6. The null hypothesis that  
b1 5 0 is clearly rejected (X2 5 95.23 in Minitab, Wald X2 5 64.233 in SPSS, 
and X2 5 64.23 in JMP; P , 0.001 for all). Note that Minitab uses a statistic 
that is quite different from the one used by JMP and SPSS, although the 
conclusion that we draw is the same. We calculate a 95% confidence interval 
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FIgUrE 14.7 Logistic 
regression output from 
(a) Minitab, (b) SPSS, and 
(c) JMP for the insecticide data, 
Example 14.9. 

(a) 

(b) 

(c) 
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for b1 using the estimate b1 5 3.1088 and its standard error SEb1
5 0.3879 

given in the output:

b1 6 z*SEb1
5 3.1088 6 (1.96)(0.3879)

5 3.1088 6 0.7603

We are 95% confident that the true value of the slope is between 2.35 and 3.87.
The odds ratio is given on the Minitab output as 22.39. An increase  

of one unit in the log concentration of insecticide (x) is associated with a  
22-fold increase in the odds that an insect will be killed. Minitab gives the 
95% confidence interval for the odds ratio, 10.47 to 47.90. We could calculate  
this from the confidence interval for the slope:

(eb12z*SEb1, eb11z*SEb1) 5 (e2.3485, e3.8691)

5 (10.47, 47.90)

Note again that the test of the null hypothesis that the slope is 0 is 
the same as the test of the null hypothesis that the odds are 1. If we were 
reporting the results in terms of the odds, we could say, “The odds of killing 
an insect increase by a factor of 22.4 for each unit increase in the log 
concentration of insecticide (X2 5 64.23, P , 0.001; 95% CI 5 10.5 to 47.9).’’

Note that SPSS and JMP give the fitted model as

log(odds) 5 4.89 2 3.11x

We see that the regression coefficients b0 and b1 are 21 times the coefficients 
given by Minitab. The reason for this is that SPSS and JMP model the log odds 
that an insect is not killed rather than the log odds that an insect is killed, as 
shown in the other two outputs. Always examine software output carefully to be 
sure that the results you are getting correspond exactly to the analysis that you 
are trying to perform. For this analysis, we know from our graph in Figure 14.6 
that the slope should be positive.

In Example 14.6, we studied the problem of predicting whether or not a 
movie was going to make a profit using the log opening weekend revenue as 
the explanatory variable. We now revisit this example and show how statistical 
inference is an important part of the conclusion.

EXAMPLE 14.10

MOVIES

software output. Figure 14.8 gives the output from Minitab for a logistic 
regression analysis using log opening-weekend revenue as the explanatory 
variable to predict the log odds that the movie will be profitable. From the 
Minitab output, we see that the fitted model is

log(odds) 5 b0 1 b1x 5 22.56 1 1.125x

In the output, the significance test results are given as chi-squared 
statistics. The P-value for log opening weekend revenue is given as 0.000, 
which we would report as P , 0.0005, so we can reject the null hypothesis that  

  0. The value of the test statistic is X2b1 5  5 14.82 with 1 degree of freedom. 
We use the estimate b1 5 1.125 and its standard error SEb1

5 0.339 to 
compute the 95% confidence interval for b1:

b1 6 z*SEb1
5 1.125 6 (1.96)(0.339)

5 1.125 6 0.664
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 FIgUrE 14.8 Logistic regression output from Minitab for the movie profitability data with 
log opening-weekend revenue as the explanatory variable, Example 14.10. 

14-16 Chapter 14 Logistic Regression 

Our estimate of the slope is 1.125, and we are 95% confident that the true 
value is between 0.461 and 1.789. For the odds ratio, the estimate on the 
output is 3.0815. The 95% confidence interval is given as (1.5856, 5.9886). 

We estimate that an opening-weekend revenue that is one unit larger 
(roughly $2.71 million) will increase the odds that a movie is profitable by 
about three times. The data, however, do not give us a very accurate estimate. 
The odds ratio could be as small as 1.6 or as large as 6.0 with 95% confidence. 
We have evidence to conclude that movies with higher opening-weekend 
revenues are more likely to be profitable, but establishing the relationship ac
curately would require more data. 

Multiple logistic regression 

multiple logistic regression 

LOOK BACK 

multiple linear  
regression  

p. 610 

The movie example that we just considered naturally leads us to the next 
topic. The MOVIES data file includes additional explanatory variables. Do 
these other explanatory variables contain additional information that will give 
us a better prediction of profitability? We use multiple logistic regression   
to answer this question. Generating the computer output is easy, just as it  
was when we generalized simple linear regression with one explanatory 
variable to multiple linear regression with more than one explanatory variable 
in Chapter 11. The statistical concepts are similar, although the computations 
are more complex. Here is the example. 
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EXAMPLE 14.11

MOVIES

software output. As in Example 14.10, we predict the odds that a movie 
is profitable. The explanatory variables are log opening-weekend revenue 
(LOpening), number of theaters (Theaters), and a rating (Opinion) of the 
movie on a 1 to 10 scale (10 being best). Figure 14.9 gives the outputs from 
Minitab and SPSS. The fitted model is

log(odds) 5 b0 1 b1 LOpening 1 b2 Theaters 1 b3 Opinion

5 20.404 1 2.001 LOpening 2 0.001 Theaters 2 0.214 Opinion

FIgUrE 14.9 Logistic regression output from (a) Minitab and (b) SPSS for the movie 
profitability data with log opening-weekend revenue, number of theaters, and the movie’s 
rating as the explanatory variables, Example 14.11. 

(a)

(b)
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When analyzing data using multiple linear regression, we first examine 
the hypothesis that all the regression coefficients for the explanatory 
variables are zero. We do the same for multiple logistic regression. The 
hypothesis 

     H0: b1 5 b2 5 b3 5 0 

is tested by a chi-square statistic with 3 degrees of freedom. (The degrees of 
freedom are 3 because there are three coefficients that are set to zero in the 
null hypothesis.) For Minitab, this is given near the top of the output on the 
line titled “Regression’’ under the label “Chi-square.’’ The value is 18.50, and 
the P-value is given as 0.000. We would report this as P  , 0.0005. We reject 
H0 and conclude that one or more of the explanatory variables can be used 
to predict the odds that a movie is profitable. 

We now examine the coefficients for each variable and the tests that 
each of these is zero in a model that contains the other two. The P-values 
are 0.000 (, 0.0005), 0.056, and 0.436. The null hypotheses H0: b2  5 0 and 
H0: b3  5 0 cannot be rejected. That is, log opening-weekend revenue is the 
only predictor that adds significant predictive ability once the other two are 
already in the model. 

Our initial multiple logistic regression analysis told us that the explanatory  
variables contain information that is useful for predicting whether or not the  
movie is profitable. Because the explanatory variables are correlated, however,  
we cannot clearly distinguish which variables or combinations of variables are  
important. Further analysis of these data using subsets of the three explanatory  
variables is needed to clarify the situation. We leave this work for the exercises. 

CHAPTEr 14 sUMMArY 
●  If p⁄  is the sample proportion, then the odds are p⁄ y(1 2 p⁄ ), the ratio of the 
proportion of times the event happens to the proportion of times the event 
does not happen. 

●  The logistic regression model relates the log of the odds to the explana
tory variable: 

 log 
pi 

5 b0 1 b1xi1 2 pi 
S D

where the response variables for i  5 1, 2, . . . , n are independent binomial 
random variables with parameters 1 and pi; that is, they are independent with 
distributions B(1, pi). The explanatory variable is x. 

●  The parameters of the logistic model are b0 and b1. 

●  eb1  The odds ratio is , where b1 is the slope in the logistic regression model. 

●  A level C  confidence interval for the intercept  b0 is 

b0 6 z*SEb0 

A level C  confidence interval for the slope  b1 is 

b1 6 z*SEb1 
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A level C  confidence interval for the odds ratio  eb1 is obtained by transforming  
the confidence interval for the slope: 

 b12z*SEb1
b11z*SEb1)(e , e

In these expressions, z* is the value for the standard Normal density curve 
with area C between 2z* and z*. 

●  To test the hypothesis H0: b1  5 0, compute the test statistic 

b1 z 5 
SEb1 

and use the fact that z has a distribution that is approximately the standard 
Normal distribution when the null hypothesis is true. This statistic is 
sometimes called the Wald statistic. An alternative equivalent procedure is 
to report the square of z, 

  X2 5 z2 

This statistic has a distribution that is approximately a 2x  distribution with  
1 degree of freedom, and the P-value is calculated as P( 2 x  $  X2). This is the 
same as testing the null hypothesis that the odds ratio is 1. 

●  In multiple logistic regression, the response variable has two possible   
values, as in logistic regression, but there can be several explanatory variables. 

CHAPTEr 14  EXERCISES 

For Exercises 14.1 and 14.2, see page 14-3; for   
Exercises 14.3 and 14.4, see page 14-4; for Exercises 14.5   
and 14.6, see page 14-6; for Exercises 14.7 and 14.8,   
see page 14-9; and for Exercises 14.9 and 14.10, see   
page 14-11.
 

14.11  How did you use your cell phone? A Pew 
Internet Poll asked cell phone owners about how they 
used their cell phones. One question asked whether or 
not, during the past 30 days, they had used their phone 
while in a store to call a friend or family member for 
advice about a purchase they were considering. The 
poll surveyed 1003 adults living in the United States by 
telephone. Of these, 462 responded that they had used 
their cell phone while in a store within the last 30 days 
to call a friend or family member for advice about a 
purchase they were considering.3 

(a) What proportion of those surveyed reported that  
they used their cell phone while in a store within the 
last 30 days to call a friend or family member for advice 
about a purchase they were considering? 

(b) Find the odds for the probability that you found in 
part (a). 

14.12  Find some odds. For each of the following 

probabilities, find the odds: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9. Make a plot of the odds versus the probabilities 

and describe the relationship.
 

14.13  A logistic model for cell phones. Refer to  
Exercise 14.11. Suppose that you want to investigate  
differences in cell phone use among customers of  
different ages. You create an indicator explanatory  
variable x that has the value 1 if the customer is 25 years  
of age or less and is 0 if the customer over 25 years of age. 

(a) Describe the statistical model for logistic regression in
this setting.

(b) Explain the relationship between the regression 
coefficients and the odds ratios for the two groups of 
customers defined by x. 

14.14  Another logistic model for cell phones and age.  
Refer to the previous exercise. Suppose that you use the 
actual value of age in years as the explanatory variable in 
a logistic regression model. 

(a) Describe the statistical model for logistic regression in 
this setting. 
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(b) Interpret the regression slope in terms of an effect 
based on a difference in age of one year. 

(c) This model requires an assumption that is not needed 
in the model that you described in the previous exercise. 
Explain the assumption and describe a method for 
examining whether or not it is a reasonable assumption 
to make for these data. (Hint: Refer to Example 14.8 and 
Figure 14.5, page 14–12.) 

14.15  A logistic regression for teeth and military 
service. Exercise 8.62 (page 520) describes data on the 
numbers of U.S. recruits who were rejected for service in 
a war against Spain because they did not have enough 
teeth. The exercise compared the rejection rate for 
recruits who were under the age of 20 with the rate for 
those who were 40 or over. To run a logistic regression 
for this setting, we define an indicator explanatory 
variable x with values 0 for age under 20 and 1 for age  
40 or over. Figure 14.10 gives output from Minitab for 
this analysis. TEETH1 

(a) How many recruits were examined? How many were 
rejected and how many were not rejected? 

(b) Write the fitted logistic regression model. 

14.16  Inference for teeth and military service. Refer 
to the previous exercise. 

(a) Using the information provided in the output in 
Figure 14.10, calculate and interpret the 95% confidence 
interval for the regression slope. 

(b) Describe and interpret the results of the significance 
test for the regression slope. Be sure to give the null and 
alternative hypotheses, the test statistic, and the P-value 
with your conclusion. 

14.17  Odds ratio for teeth and military service. Refer 
to the two previous exercises. 

(a) Give the odds ratio for this analysis. 

(b) Give the 95% confidence interval for the odds ratio. 

(c) Give a brief description of the meaning of the odds 
ratio in this analysis. 

14.18  Teeth and military service with six age 
categories. In Exercises 14.15, 14.16, and 14.17, we used 
logistic regression to study the relationship between 
being rejected for military service because a recruit did 
not have enough teeth and age categorized into two 
groups, under 20 and 40 or over. Data are available for all 
recruits categorized into six age groups. Let’s look at a 
logistic regression that uses all the data to predict 
rejection for military service based on teeth. There are six 
age groups: under 20, 20–25, 25–30, 30–35, 35–40, and 40 
or over. We define indicator explanatory variables for the 
last five groups. This is similar to defining a single 
indicator explanatory variable for an analysis of two 
groups. TEETH2 

Figure 14.11 gives the Minitab output for the logistic 
regression to predict rejection using the five age indicator 
explanatory variables. 

  FIgUrE 14.10 Logistic regression output from Minitab for predicting recruit rejection using age in two categories, 
Exercises 14.15, 14.16, and 14.17. 
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FIgUrE 14.11 Logistic regression output from Minitab for predicting recruit rejection using age in six categories, 
Exercises 14.18 through 14.21. 

(a) Use the output to find the fitted model. 

(b) Is there a pattern in the values of the regression 
slopes? If yes, describe it. 

14.19  Inference for the multiple logistic regression 
model. Refer to the previous exercise. 

(a) Describe and interpret the significance test that tests 
the null hypothesis that all regression coefficients are 
zero. 

(b) Using the information provided in the output in 
Figure 14.11, calculate and interpret the 95% confidence 
interval for each of the regression slopes. 

(c) Describe and interpret the results of the significance 
test for each regression slope. Be sure to give the null and 
alternative hypotheses, the test statistic, and the P-value 
with your conclusion. 

14.20  Odds ratios for the multiple logistic regression 
model. Refer to the two previous exercises. 

(a) Give the odds ratio for each explanatory variable. 

(b) Give the 95% confidence interval for each odds ratio. 

(c) Give a brief description of the meaning of each odds 
ratio in this analysis. 

14.21  Compare the multiple logistic regression 
analysis with the two-way table. The data analyzed  
in Figure 14.11 were analyzed in Exercise 9.42 and 
Figure 9.11 (page 552) using a 2 3 6 table of counts. 
Compare these two approaches to the analysis of these 
data. Describe some strengths and weaknesses of each 
approach. Which do you prefer? Give reasons for your 
answer. 

14.22  What purchases will be made? A poll of 1000 
adults aged 18 or older asked about purchases they 
intended to make for the upcoming holiday season.4   
A total of 463 adults listed gift card as a planned 
purchase. 

(a) What proportion of adults plan to purchase a gift card 
as a present? 

(b) What are the odds that an adult will purchase a gift 
card as a present? 

(c) What proportion of adults do not plan to purchase a 
gift card as a present? 
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(d) What are the odds that an adult will not buy a gift 
card as a present? 

(e) How are your answers to parts (b) and (d) related? 

14.23  High blood pressure and cardiovascular disease.  
There is much evidence that high blood pressure is  
associated with increased risk of death from cardiovascular  
disease. A major study of this association examined 3338  
men with high blood pressure and 2676 men with low  
blood pressure. During the period of the study, 21 men in  
the low-blood-pressure group and 55 in the high-blood
pressure group died from cardiovascular disease. 

(a) Find the proportion of men who died from 
cardiovascular disease in the high-blood-pressure group. 
Then calculate the odds. 

(b) Do the same for the low-blood-pressure group. 

(c) Now calculate the odds ratio with the odds for the 
high-blood-pressure group in the numerator. Describe the 
result in words. 

14.24  High blood pressure and cardiovascular disease.  
Refer to the study of cardiovascular disease and blood  
pressure in Exercise 14.23. Computer output for a logistic  
regression analysis of these data gives the estimated slope  
b1  5 0.7505 with standard error SEb1 

5 0.2578. 

(a) Give a 95% confidence interval for the slope. 

(b) Calculate the X2 statistic for testing the null 
hypothesis that the slope is zero and use Table F to find 
an approximate P-value. 

(c) Write a short summary of your results and conclusions. 

14.25  High blood pressure and cardiovascular 
disease. The results describing the relationship between
blood pressure and cardiovascular disease are given in 
terms of the change in log odds in Exercise 14.24. 

(a) Transform the slope to the odds ratio and the 95% 
confidence interval for the slope to a 95% confidence 
interval for the odds ratio. 

 

(b) Write a conclusion using the odds to describe the 
results. 

14.26  Exergaming in Canada. Exergames are active 
video games such as rhythmic dancing games, virtual 
bicycles, balance board simulators, and virtual sports 
simulators that require a screen and a console. A study of 
exergaming by students in grades 10 and 11 in Montreal, 
Canada, examined many factors related to participation 
in exergaming.5 Of the 358 students who reported that 
they stressed about their health, 29.9% said that they 
were exergamers. Of the 851 students who reported that 
they did not stress about their health, 20.8% said that 
they were exergamers. Analyze these data using logistic 
regression and write a summary of your analytical 
approach, your results, and your conclusions. 

14.27  More exergaming in Canada. Refer to the 
previous exercise. Another explanatory variable reported 
in this study was the amount of television watched per 
day. Of the 54 students who reported that they watched 
no TV, 11.1% were exergamers; for the 776 students who 
watched some TV but less than two hours, 20.6% were 
exergamers; and for the 370 students who watched two 
or more hours, 31.1% were exergamers. Use logistic 
regression to examine the relationship between TV 
watching and exergaming. Write a summary of your 
analytical approach, your results, and your conclusions. 

14.28  What’s wrong? For each of the following, explain 
what is wrong and why. 

(a) If b1  5 5 in a logistic regression analysis with one 
explanatory variable, we estimate that the probability 
of an event is multiplied by 5 when the value of the 
explanatory variable increases by one unit. 

(b) The intercept b0 is equal to the odds of an event when 
x  5 0. 

(c) The odds of an event are 1 minus the probability of 
the event. 

14.29  What’s wrong? For each of the following, explain 
what is wrong and why. 

(a) For a multiple logistic regression with four 
explanatory variables, the null hypothesis that the 
regression coefficients of all the explanatory variables are 
zero is tested with an F test. 

(b) For a logistic regression, we assume that the model 
has a Normally distributed error term. 

(c) In logistic regression with one explanatory variable, 
we can use a chi-square statistic to test the null 
hypothesis H0: b1  5 0 versus a one-sided alternative. 

(d) In multiple logistic regression, we do not need to 
worry about correlation among explanatory variables 
when interpreting model coefficient estimates. 

14.30  Interpret the fitted model. If we apply 
 
the exponential function to the fitted model in 


Example 14.6 (page 14-8), we get 
22.5611.125x 5 e22.56 3 e1.125xodds 5 e

Show that for any value of the quantitative explanatory 
variable x, the odds ratio for increasing x by 1, 

oddsx11 

oddsx 

is e1.125  5 3.08. This justifies the interpretation given at 
the end of Example 14.6. 

14.31  Will a movie be profitable? In Example 14.6 
(page 14-8), we developed a model to predict whether 
a movie is profitable based on log opening-weekend 
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revenue. What are the predicted odds of a movie being 
profitable if the opening-weekend revenue is 

(a) $20 million dollars (LOpening 5 3.00)? 

(b) $40 million dollars (LOpening 5 3.69)? 

(c) $60 million dollars (LOpening 5 4.09)? 

14.32  Converting odds to probability. Refer to the previ
ous exercise. For each opening-weekend revenue, compute  
the estimated probability that the movie is profitable. 

14.33  Salt intake and cardiovascular disease. In 
Example 9.12 (page 542), the relative risk of developing 
cardiovascular disease (CVD) for people with low- and 
high-salt diets was estimated. Let’s reanalyze these data 
using the methods in this chapter. Here are the data: 

Salt in diet 

Developed CVD Low High Total 

Yes   88  112  200 

No 1081 1134 2215 

Total 1169 1246 2415 

(a) For each salt level, find the probability of  
developing CVD. 

(b) Convert each of the probabilities that you found in 
part (a) to odds. 

(c) Find the log of each of the odds that you found in 
part (b). 

14.34  Salt in the diet and CVD. Refer to the previous 
exercise. Use x  5 1 for the high-salt diet and x  5 0 for th
low-salt diet. 

e 

(a) Find the estimates b0 and b1. 

(b) Give the fitted logistic regression model. 

(c) What is the odds ratio for a high-salt versus low-salt diet? 

(d) When the probability of an event is very small,  
the odds ratio and relative risk are similar. Compare  
this odds ratio with the relative risk estimate in  
Example 9.12. Are they close? Explain your answer. 

14.35  Give a 99% confidence interval for b1. Refer to 
Example 14.9 (page 14-13). Suppose that you wanted to 
report a 99% confidence interval for b1. Show how you 
would use the information provided in the outputs shown 
in Figure 14.7 to compute this interval. INSECTS 

14.36  Give a 95% confidence interval for the odds 
ratio. Refer to Example 14.9 and the outputs in  
Figure 14.7 (page 14-14). Using the estimate b1 and its 
standard error, find the 95% confidence interval for the 
odds ratio and verify that this agrees with the interval 
given by the software. 

14.37  z and the X2 statistic. Use the three outputs 
in Figure 14.7 (page 14–14) to explore the 

relationship between the z statistic and the X2 statistic 
that we have discussed in this chapter (page 14-10). 

(a) Use the information in each output to calculate the z  
statistic. Verify that they are essentially the same (with  
no roundoff, they would be equal). This z statistic has  
approximately the standard Normal distribution if the null  
hypothesis (slope 0) is true.  

(b) Show that the square of z is close to the Wald statistic  
reported by SPSS and the X2 statistic reported by JMP.    

(c) Note that Minitab uses a different calculation to obtain  
a X2statistic. Does the P-value for this statistic reported by  
Minitab lead to a different conclusion than the X2 values  
given by SPSS and JMP? Explain your answer.   

(d) Comment on the reporting of P values as 0.000 by  
Minitab and .000 by SPSS versus 0.0001 by JMP. Which  
do you prefer? Give reasons for your answer. 

14.38  Finding the best model? In Example 14.11  
(page 14-17), we looked at a multiple logistic regression 
for movie profitability based on three explanatory 
variables. Complete the analysis by looking at the three 
models that include two explanatory variables and the 
three models that include only one variable. Create a 
table that includes the parameter estimates and their 
P-values as well as the overall X2 statistic and degrees of 
freedom. Based on the results, which model do you feel 
is the best? Explain your answer. MOVIES 

14.39  Tipping behavior in Canada. The Consumer 
Report on Eating Share Trends (CREST) contains data 
from all provinces of Canada detailing away-from
home food purchases by roughly 4000 households per 
quarter. Researchers recently restricted their attention to 
restaurants at which tips would normally be given.6 From 
a total of 73,822 observations, “high’’ and “low’’ tipping 
variables were created based on whether the observed 
tip rate was above 20% or below 10%, respectively. They 
then used logistic regression to identify explanatory 
variables associated with either “high’’ or “low’’ tips. 
The following table summarizes what they termed the 
stereotype-related variables for the low-tip analysis: 

Explanatory variable Odds ratio 

Senior adult 1.099 

Sunday 1.098 

English as second language 1.142 

French-speaking Canadian 1.163 

Alcoholic drinks 0.713 

Lone male 0.858 

All coefficients were significant at the 0.01 level. Write a 
short summary explaining these results in terms of the 
odds of leaving a low tip. 
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14.40  An example of Simpson’s paradox. Here is 
an example of Simpson’s paradox: the reversal of the 

direction of a comparison or an association when data 
from several groups are combined to form a single group. 
The data concern two hospitals, A and B, and whether or 
not patients undergoing surgery died or survived. Here 
are the data for all patients: 

Hospital A Hospital B 

Died 

Survived 

  63 

2037 

16
 

784
 

Total 2100 800 

 And here are the more detailed data where the patients are 
categorized as being in good condition or poor condition: 

Good condition Poor condition 

Hospital A Hospital B  Hospital A Hospital B  

Died   6   8 Died   57   8 

Survived 594 592 Survived 1443 192 

Total 600 600 Total 1500 200 

(a) Use a logistic regression to model the odds of death  
with hospital as the explanatory variable. Summarize the  
results of your analysis and give a 95% confidence interval  
for the odds ratio of Hospital A relative to Hospital B. 

(b) Rerun your analysis in part (a) using hospital and 
the condition of the patient as explanatory variables. 
Summarize the results of your analysis and give a 95% 
confidence interval for the odds ratio of Hospital A 
relative to Hospital B. 

(c) Explain Simpson’s paradox in terms of your results in 
parts (a) and (b). 

14.41  Reducing the number of workers. To be 
competitive in global markets, many corporations are 
undertaking major reorganizations. Often, these involve 
“downsizing’’ or a “reduction in force’’ (RIF), where 
substantial numbers of employees are terminated. 
Federal and various state laws require that employees 
be treated equally regardless of their age. In particular, 
employees over the age of 40 are in a “protected’’ 
class, and many allegations of discrimination focus 
on comparing employees over 40 with their younger 
coworkers. Here are the data for a recent RIF: 

Terminated 

Yes 

Over 40 

No Yes 

  7  41
 

No 504 765
 

(a) Write the logistic regression model for this problem 
using the log odds of a RIF as the response variable and 
an indicator for over and under 40 years of age as the 
explanatory variable. 

(b) Explain the assumption concerning binomial distribu
tions in terms of the variables in this exercise. To what  
extent do you think that these assumptions are reasonable? 

(c) Software gives the estimated slope b1  5 1.3504 and 
its standard error SEb1 

5 0.4130. Transform the results to 
the odds scale. Summarize the results and write a short 
conclusion. 

(d) If additional explanatory variables were available—for 
example, a performance evaluation—how would you use 
this information to study the RIF? 

14.42  Internet use in Canada. A recent study used   
data from the Canadian Internet Use Survey (CIUS) to  
explore the relationship between certain demographic  
variables and Internet use by individuals in Canada.7  
The response variable refers to the use of the Internet  
from any location within the last 12 months. Explanatory  
variables included age (years), income (thousands of  
dollars), location (1 5 urban, 0 5 other), sex (1 5 male,  
0 5 female), education (1 5 at least some postsecondary  
education, 0 5 other), language (1 5 English, 0 5 French),  
and children (1 5 at least one child in household, 0 5 no  
children). The following table summarizes the results: 

Explanatory variable b 

Age 20.063 

Income   0.013 

Location   0.367 

Sex 20.222 

Education   1.080 

Language   0.285 

Children   0.049 

Intercept   2.010 

14-24 

All but Children were significant at the 0.05 level. 

(a) Interpret the sign of each of the coefficients (except 
the intercept) in terms of the probability that the 
individual uses the Internet. 

(b) Compute the odds ratio for each of the variables in 
the table. 

(c) What are the odds that a French-speaking, 23-year
old male, living alone in Montreal, and making $50,000 a 
year his second year after college is using the Internet? 

(d) Convert the odds in part (c) to a probability. 

14.43  Predicting physical activity. Participation in 
physical activities typically declines between high school 
and young adulthood. This suggests that postsecondary 
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institutions may be an ideal setting to address physical 
activity. A study looked at the association between 
physical activity and several behavioral and perceptual 
characteristics among midwestern college students.8 Of 
663 students who met the vigorous activity guidelines for 
the previous week, 169 reported eating fruit two or more 
times per day. Of the 471 who did not meet the vigorous 
activity guidelines in the previous week, 68 reported 
eating fruit two or more times per day. Model the log 
odds of vigorous activity using an indicator variable for 
eating fruit two or more times per day as the explanatory 
variable. Summarize your findings. 

14.44  Online consumer spending. The Consumer  
Behavior Report is designed to provide insight into online  
shopping trends.9 A recent report asked the question, “In   
the past three months, how has the current state of the  
economy impacted your money spending on online pur
chasing?’’ Here are the results from 3156 online consumers: 

Reduced spending 

Gender No Yes 

Female  586 708
 

Male 1074 788
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(a) What proportion of individuals plan to reduce their 
spending in each gender? 

(b) What is the odds ratio for comparing female 
individuals to male individuals? 

(c) Write the logistic regression model for this problem 
using the log odds of reducing spending as the response 
variable and an indicator of gender as the explanatory 
variable. 

(d) Software gives the estimated slope b1  5 0.4988 and its 
standard error SEb1 

5 0.0729. Transform this result to the 
odds scale and compare it with your answer in part (b). 

(e) Construct a 95% confidence interval for the odds ratio 
and write a short conclusion. 

14.45  Proximity of fast-food restaurants to schools 
and adolescent overweight. A California study looked 
at the relationship between fast-food restaurants near 
schools (within a 0.5-mile radius) and overweight among 
middle and high school students.10 Overweight was 
determined based on each student’s responses to the 
California Healthy Kids Survey (CHKS). A database of 
latitude-longitude coordinates for schools and restaurants 
was used to determine proximity. Here are the data: 

Fast-food nearby n X(overweight) 

No 238,215 65,080 

Yes 291,152 83,143 

Use logistic regression to study the question of whether 
or not overweight is related to the proximity of fast-
food restaurants to schools. Write a short paragraph 
summarizing your conclusions. 

14.46  Overweight and fast-food restaurants, 
continued. Refer to the previous exercise. In the article, 
the researchers commented that (1) CIs were adjusted to 
take into account that the students were from different 
schools; and (2) the analyses took into account the sex, 
age, and race/ethnicity of the students and other variables 
related to characteristics of the schools. 

(a) What violation of the distribution of the response is 
Statement 1 addressing? Explain your answer. 

(b) Explain why the researchers controlled for the 
variables described in Statement 2 when looking at the 
relationship between overweight and proximity. 

The following four exercises use the GPAHI data file.  
We examine models for relating success as measured by  
the GPA to several explanatory variables. In Chapter 11,  
we used multiple regression methods for our analysis.  
Here, we define an indicator variable, HIGPA, to be 1 if  
the GPA is 3.0 or better and 0 otherwise. GPAHI 

14.47  Use high school grades to predict high 
grade point averages. Use a logistic regression to 

predict HIGPA using the three high school grade 
summaries as explanatory variables. GPAHI 

(a) Summarize the results of the hypothesis test that the 
coefficients for all three explanatory variables are zero. 

(b) Give the coefficient for high school math grades with 
a 95% confidence interval. Do the same for the two other
predictors in this model. 

 

(c) Summarize your conclusions based on parts (a) and (b). 

14.48  Use SAT scores to predict high grade point 
averages. Use a logistic regression to predict HIGPA 

using the SATM and SATCR scores as explanatory 
variables. GPAHI 

(a) Summarize the results of the hypothesis test that the 
coefficients for both explanatory variables are zero. 

(b) Give the coefficient for the SATM score with a 95% 
confidence interval. Do the same for the SATCR score. 

(c) Summarize your conclusions based on parts (a) 
and (b). 

14.49  Use high school grades and SAT scores  
to predict high grade point averages. Run  

a logistic regression to predict HIGPA using the three 
high school grade summaries and the two SAT scores  
as explanatory variables. We want to produce an  
analysis that is similar to that done for the case study  
in Chapter 11. GPAHI 
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(a) Test the null hypothesis that the coefficients of the 
three high school grade summaries are zero; that is, test 
H0: bHSM  5  bHSS  5  bHSE  5 0. 

(b) Test the null hypothesis that the coefficients of the two  
SAT scores are zero; that is, test H0: bSATM  5  bSATCR  5 0. 

(c) What do you conclude from the tests in parts (a) and (b)? 

14.50  Is there an effect of gender? In this exercise, 
we investigate the effect of gender on the odds of 

getting a high GPA. GPAHI 

(a) Use gender to predict HIGPA using a logistic 
regression. Summarize the results. 

(b) Perform a logistic regression using gender and the 
two SAT scores to predict HIGPA. Summarize the results. 

(c) Compare the results of parts (a) and (b) with respect 
to how gender relates to HIGPA. Summarize your 
conclusions. 

CHAPTEr 14  NOTES AND DATA SOURCES  

1.  Logistic regression models for the general case where  
there are more than two possible values for the response  
variable have been developed. These are considerably  
more complicated and are beyond the scope of our present  
study. For more information on logistic regression, see A.  
Agresti, An Introduction to Categorical Data Analysis, 2nd  
ed., Wiley, 2007; and D. W. Hosmer and S. Lemeshow,  
Applied Logistic Regression, 2nd ed., Wiley, 2000. 

2.  This example is taken from a classic text written by a  
contemporary of R. A. Fisher, the person who developed  
many of the fundamental ideas of statistical inference that  
we use today. The reference is D. J. Finney, Probit Analysis, 
Cambridge University Press, 1947. Although not included  
in the analysis, it is important to note that the experiment  
included a control group that received no insecticide.  
No aphids died in this group. We have chosen to call the  
response “dead.” In Finney’s book, the category is described  
as “apparently dead, moribund, or so badly affected as to  
be unable to walk more than a few steps.” This is an early  
example of the need to make careful judgments when  
defining variables to be used in a statistical analysis. An  
insect that is “unable to walk more than a few steps” is  
unlikely to eat very much of a chrysanthemum plant! 

3.  See www.pewinternet.org/2012/01/30 
/the-rise-of-in-store-mobile-commerce/. 

4.  Erin K. O’Loughlin et al., “Prevalence and correlates of  
exergaming in youth,” Pediatrics, 130 (2012), pp. 806–814. 

5.  Based on Leigh J. Maynard and Malvern 
Mupandawana, “Tipping behavior in Canadian 
restaurants,” International Journal of Hospitality 
Management, 28 (2009), pp. 597–603. 

6.  These results are from the Consumer Reports National 
Research Center, which conducted a telephone survey 
of a nationally representative probability sample of 
tele-phone households. One thousand interviews were 
completed among adults aged 18 and over. Interviewing 
took place October 15–18, 2009. 

7.  Anthony A. Noce and Larry McKeown, “A new 
benchmark for Internet use: A logistic modeling of 
factors influencing Internet use in Canada, 2005,” 
Government Information Quarterly, 25 (2008),  
pp. 462–476. 

8.  Dong-Chul Seo et al., “Relations between physical 
activity and behavioral and perceptual correlates among 
midwestern college students,” Journal of American College 
Health, 56 (2007), pp. 187–197. 

9.  These economic trend reports are from 
mr.pricegrabber.com. These results are based on the 
June 2009 report. 

10.  Brennan Davis and Christopher Carpenter, 
“Proximity of fast-food restaurants to schools and 
adolescent obesity,” American Journal of Public Health, 99 
(2009), pp. 505–510. 
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