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Bootstrap Methods and  
Permutation Tests* 

Introduction 
16.1  The Bootstrap Idea 

16.2  First Steps in Using 
the Bootstrap 

16.3  How Accurate 
Is a Bootstrap 
Distribution? 

16.4 Bootstr ap 
Confidence 
Intervals 

16.5  Significance Testing 
Using Permutation 
Tests 

The continuing revolution in computing is having a dramatic influence on  
statistics. The exploratory analysis of data is becoming easier as more graphs  
and calculations are automated. The statistical study of very large and very  
complex data sets is now feasible. Another impact of this fast and inexpensive  
computing is less obvious: new methods apply previously unthinkable amounts  
of computation to produce confidence intervals and tests of significance in  
settings that don’t meet the conditions for safe application of the usual methods  
of inference. 

Consider the commonly used t procedures for inference about means 
(Chapter 7) and for relationships between quantitative variables (Chapter 10). 
All these methods rest on the use of Normal distributions for data. While no 
data are exactly Normal, the t procedures are useful in practice because they 

*The original version of this chapter was written by Tim Hesterberg, David S. Moore, Shaun 
Monaghan, Ashley Clipson, and Rachel Epstein, with support from the National Science 
Foundation under grant DMI-0078706. Revisions have been made by Bruce A. Craig and George 
P. McCabe. Special thanks to Bob Thurman, Richard Heiberger, Laura Chihara, Tom Moore, 
and Gudmund Iversen for helpful comments on an earlier version. 
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are robust. Nonetheless, we cannot use t confidence intervals and tests if the 
data are strongly skewed, unless our samples are quite large. 

Other procedures cannot be used on non-Normal data even when the 
samples are large. For example, inference about spread based on Normal 
distributions is not robust and, therefore, is of little use in practice. 

Finally, what should we do if we are interested in, say, a ratio of means, 
such as the ratio of average men’s salary to average women’s salary? There is 
no simple traditional inference method for this setting. 

The methods of this chapter—bootstrap confidence intervals and permuta­
tion tests—apply the power of the computer to relax some of the conditions 
needed for traditional inference and to do inference in new settings. The big 
ideas of statistical inference remain the same. The fundamental reasoning is 
still based on asking, “What would happen if we applied this method many 
times?’’ Answers to this question are still given by confidence levels and  
P-values based on the sampling distributions of statistics. 

The most important requirement for trustworthy conclusions about a 
population is still that our data can be regarded as random samples from the 
population—not even the computer can rescue voluntary response samples or 
confounded experiments. But the new methods set us free from the need for 
Normal data or large samples. They work the same way for many different sta­
tistics in many different settings. They can, with sufficient computing power, 
give results that are more accurate than those from traditional methods. 

Bootstrap intervals and permutation tests are conceptually simple because 
they appeal directly to the basis of all inference: the sampling distribution 
that shows what would happen if we took very many samples under the same 
conditions. The new methods do have limitations, some of which we will 
illustrate. But their effectiveness and range of use are so great that they are 
now widely used in a variety of settings. 
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Software 
Bootstrapping and permutation tests are feasible in practice only with soft­
ware that automates the heavy computation that these methods require. If you 
are sufficiently expert, you can program at least the basic methods yourself. 
It is easier to use software that offers bootstrap intervals and permutation 
tests preprogrammed, just as most software offers the various t intervals and 
tests. You can expect the new methods to become more common in standard 
statistical software. 

This chapter primarily uses R, the software choice of many statisticians  
doing research on resampling methods.1 There are several packages of func­
tions for resampling in R. We will focus on the boot package, which offers 
the most capabilities. Unlike software such as Minitab and SPSS, R is not 
menu driven and requires command line requests to load data and access 
various functions. All commmands used in this chapter are available on the 
text website. 

JMP, SPSS, and SAS also offer preprogrammed bootstrap and permuta­
tion methods. JMP offers single-click bootstrapping capabilities to many of 
their tables of results. SPSS has an auxiliary bootstrap module that contains 
most of the methods described in this chapter. In SAS, the SURVEYSELECT 
procedure can be used to do the necessary resampling. The bootstrap macro 
contains most of the confidence interval methods offered by R. You can find 
links for downloading these modules or macros on the text website. 
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16.1  The Bootstrap Idea 

When you complete 
this section, you will 
be able to: 

●  Randomly select bootstrap resamples from a small sample using 
software or a table of random digits. 

●  Find the bootstrap standard error from a collection of resamples. 
●  Use computer output to describe the results of a bootstrap analysis  

of the mean. 

Here is the example we will use to introduce these methods. 

Average time looking at a Facebook profile.  In Example 12.17 (page 670), 
we compared the amount of time a Facebook user spends reading different 
types of profiles. Here, let’s focus on just the average time for the fourth 
profile (negative male). Figure 16.1(a) gives a histogram, and Figure 16.1(b) 
gives the Normal quantile plot of the 21 observations. The data are skewed
to the right. Given the relatively small sample size, we have some concerns 
about using the t procedures for these data. 

EXAMPLE 16.1 

FACE4 
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FigurE 16.1 (a) The distribution of times (minutes) looking at a negative male 

Facebook profile page. (b) Normal quantile plot of the times, Example 16.1.
 
The distribution is right-skewed.
 

15 
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The big idea:  resampling and the bootstrap distribution 
Statistical inference is based on the sampling distributions of sample sta­
tistics. A sampling distribution is based on many random samples from the 
population. The bootstrap is a way of finding the sampling distribution, at 
least approximately, from just one sample. Here is the procedure: 



16_Moore_13387_Ch16_01-57.indd   4 06/10/16   9:54 PM

 16-4 Chapter 16 Bootstrap Methods and Permutation Tests 

    
  

 
  

3.77 0.23 5.08 4.35 8.60 
Mean = 4.41 

3.77 0.23 0.23 4.35 4.35 
Mean = 2.59 

3.77 4.35 0.23 8.60 8.60 
Mean = 5.11 

8.60 3.77 0.23 5.08 5.08 
Mean = 4.55 

FigurE 16.2 The resampling idea. The top box is a sample of size n 5 5 from the 
Facebook profile viewing time data. The three lower boxes are three resamples from this 
original sample. Some values from the original sample are repeated in the resamples 
because each resample is formed by sampling with replacement. We calculate the statistic 
of interest, the sample mean in this example, for the original sample and each resample. 
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resample,  
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Step 1: Resampling. In Example 16.1, we have just one random sample of  
21 observations. In place of many samples from the population, create many  
resamples by repeatedly sampling  with replacement from this one random  
sample. Each resample is the same size as the original random sample. 

Sampling with replacement means that after we randomly draw an  
observation  from the original sample, we put it back before drawing the next  
observation. Think of drawing a number from a hat and then putting it back  
before drawing again. As a result, any number can be drawn more than once. If  
we sampled without replacement, we’d get the same set of numbers we started  
with, though in a different order. Figure 16.2 illustrates three resamples from  
a sample of five observations. In practice, we draw hundreds or thousands of  
resamples, not just three. 

Step 2: Bootstrap distribution. The sampling distribution of a statistic 
describes the values taken by the statistic in all possible samples of the popu­
lation of the same size. The bootstrap distribution of a statistic summarizes 
the values taken by the statistic in all possible resamples of the same size. The 
bootstrap distribution gives information (that is, shape and spread) about the 
sampling distribution. 

The BOOTsTrAp IdeA 

The original sample is representative of the population from which it 
was drawn. Thus, resamples from this original sample represent what we 
would get if we took many samples from the population. The bootstrap 
distribution of a statistic, based on the resamples, represents the sampling 
distribution of the statistic. 

bootstrap distribution 

EXAMPLE 16.2 

FACE4 

Bootstrap distribution of the mean time looking at a Facebook profile.  In 
Example 16.1, we want to estimate the average time viewing a negative 
male Facebook profile, m, so the statistic is the sample mean x. For our one 
sample of subjects, x 5 7.87 minutes. When we resample, we get different 
values of x, just as we would if we randomly sampled a new group of 
subjects to survey. 

We randomly generated 3000 resamples for these data. The mean for the 
resamples is 7.89 minutes, and the standard deviation is 1.22 minutes. Fig­
ure 16.3(a) gives a histogram of the bootstrap distribution of the means of 
3000 resamples from the viewing time data. The Normal density curve with 
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FigurE 16.3 (a) The bootstrap distribution of 3000 resample means from the sample of 
Facebook profile viewing time data. The smooth curve is the Normal density function for 
the distribution which matches the mean and standard deviation of the distribution of the 
resample means. (b) The Normal quantile plot confirms that the bootstrap distribution is 
slightly skewed to the right but fits the Normal distribution quite well. 
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the mean 7.89, and standard deviation 1.22 is superimposed on the histo­
gram. A Normal quantile plot is given in Figure 16.3(b). The Normal curve 
fits the data well, but some skewness is still evident. 

According to the bootstrap idea, the bootstrap distribution represents the 
sampling distribution. Let’s compare the bootstrap distribution with what we 
know about the sampling distribution. 

Shape: We see that the bootstrap distribution is nearly Normal. The 
central limit theorem says that the sampling distribution of the sample mean 
x is approximately Normal if n is large. So the bootstrap distribution shape is
close to the shape we expect the sampling distribution to have.central limit 

theorem,  
p. 298 

mean and 
standard 

deviation of x,  
p. 297 

Center: The bootstrap distribution is centered close to the mean of the 
original sample, 7.89 minutes versus 7.87 minutes for the original sample. 
Therefore, the mean of the bootstrap distribution has little bias as an estimator 
of the mean of the original sample. We know that the sampling distribution of 
x is centered at the population mean m, that is, that x is an unbiased estimate 
of m. So the resampling distribution behaves (starting from the original sample) 
as we expect the sampling distribution to behave (starting from the population). 

Spread: The histogram and density curve in Figure 16.3(a) picture the 
variation among the resample means. We can get a numerical measure by 
calculating their standard deviation. Because this is the standard deviation 
of the 3000 values of x that make up the bootstrap distribution, we call it the 
bootstrap standard error of x. The numerical value is 1.22. In fact, we know 
that the standard deviation of x is syÏn, where s is the standard deviation of 

bootstrap standard error 



individual observations in the population. Our usual estimate of this quantity 
is the standard error of x, syÏn, where s is the standard deviation of our one 
random sample. For these data, s 5 5.65 and 

s 5.65 
5 5 1.23 

Ïn Ï21 
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central limit 
theorem,  

p. 298 

The bootstrap standard error 1.22 is very close to the theory-based estimate 1.23. 
In discussing Example 16.2, we took advantage of the fact that statistical 

theory tells us a great deal about the sampling distribution of the sample mean 
x. We found that the bootstrap distribution created by resampling matches 
the properties of this sampling distribution. The heavy computation needed 
to produce the bootstrap distribution replaces the heavy theory (central limit 
theorem, mean, and standard deviation of x) that tells us about the sampling 
distribution. 

The great advantage of the resampling idea is that it often works even when 
theory does not apply. Of course, theory also has its advantages: we know ex­
actly when it works. We don’t know exactly when resampling works, so that 
“When can I safely bootstrap?’’ is a somewhat subtle issue. 

Figure 16.4 illustrates the bootstrap idea by comparing three distributions. 
Figure 16.4(a) shows the idea of the sampling distribution of the sample mean 
x: take many simple random samples (SRS) from the population, calculate the 
mean x for each sample, and collect these x-values into a distribution. 

Figure 16.4(b) shows how traditional inference works: statistical theory 
tells us that if the population has a Normal distribution, then the sampling 
distribution of x is also Normal. If the population is not Normal but our 
sample is large, we can use the central limit theorem. If m and s are the 
mean and standard deviation of the population, the sampling distribution of 
x has mean m and standard deviation syÏn. When it is available, theory is 
wonderful: we know the sampling distribution without the impractical task of 
actually taking many samples from the population. 

SRS of size n 

SRS of size n 

SRS of size n 

· · 
· · 
· · 

POPULATION 
unknown mean � 

Sampling distribution 

(a) 

FigurE 16.4 (a) The idea of the sampling distribution of the sample mean x: take very 
many samples, collect the x values from each, and look at the distribution of these values. 
(b) The theory shortcut: if we know that the population values follow a Normal distribution, 
theory tells us that the sampling distribution of x is also Normal. (c) The bootstrap idea: when 
theory fails and we can afford only one sample, that sample stands in for the population,  
and the distribution of x in many resamples stands in for the sampling distribution. 
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FigurE 16.4 (Continued) 
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Figure 16.4(c) shows the bootstrap idea: we avoid the task of taking many sam­
ples from the population by instead taking many resamples from a single sample. 
The values of x from these resamples form the bootstrap distribution. We use the 
bootstrap distribution rather than theory to learn about the sampling distribution. 

uSE Your KnoWLEdgE 

FACE46 

16.1 A small bootstrap example. To illustrate the bootstrap procedure, 
let’s bootstrap a small random subset of the Facebook profile data: 

4.02 3.03 4.35 8.33 1.40 5.08 

(a) Sample with replacement from this initial simple random sample 
(SRS) by rolling a die. Rolling a 1 means select the first member of the 
SRS, a 2 means select the second member, and so on. (You can also 
use Table B of random digits, responding only to digits 1 to 6.) Create 
20 resamples of size n 5 6. 

(b) Calculate the sample mean for each of the resamples. 

(c) Make a stemplot of the means of the 20 resamples. This is the 
bootstrap distribution. 

(d) Calculate the bootstrap standard error. 
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16.2	  Standard deviation versus standard error.  Explain the difference 
between the standard deviation of a sample and the standard error of 
a statistic such as the sample mean. 

Thinking about the bootstrap idea 
It might appear that resampling creates new data out of nothing. This seems 
suspicious. Even the name “bootstrap’’ comes from the impossible image of 
“pulling yourself up by your own bootstraps.’’2 But the resampled observations 
are not used as if they were new data. The bootstrap distribution of the 
resample means is used only to estimate how the sample mean of one actual 
sample of size 21 would vary because of random sampling. 

Using the same data for two purposes—to estimate a parameter and also to 
estimate the variability of the estimate—is perfectly legitimate. We do exactly 
this when we calculate x to estimate m and then calculate syÏn from the same 
data to estimate the variability of x. 

What is new? First of all, we don’t rely on the formula syÏn to estimate the 
standard deviation of x. Instead, we use the ordinary standard deviation of the 
many x-values from our many resamples.3 Suppose that we take B resamples 
and call the means of these resamples x* to distinguish them from the mean x  
of the original sample. We would then find the mean and standard deviation 
of the x*’s in the usual way. 

To make clear that these are the mean and standard deviation of the means 
of the B  resamples rather than the mean x  and standard deviation s  of the 
original sample, we use a distinct notation: 

LOOK BACK 

describing 
distributions 

with numbers,  
p. 27 

1 
meanboot 5 

B ox* 

B 2 1 o(x* 2 meanboot)
2SEboot 5 Î 1 

These formulas go all the way back to Chapter 1. Once we have the values x*, 
we can just ask our software for their mean and standard deviation. 

Because we will often apply the bootstrap to statistics other than the 
sample mean, here is the general definition for the bootstrap standard error. 

BOOTsTrAp sTAndArd errOr 

The bootstrap standard error,  SEboot, of a statistic is the standard 
deviation of the bootstrap distribution of that statistic. 

Second, we don’t appeal to the central limit theorem or other theory to tell  
us that a sampling distribution is roughly Normal. We look at the bootstrap  
distribution to see if it is roughly Normal (or not). In most cases, the boot­
strap distribution has approximately the same shape and spread as the sam­
pling distribution, but it is centered at the original sample statistic value  
rather than the parameter value. 

In summary, the bootstrap allows us to calculate standard errors for sta­
tistics for which we don’t have formulas and to check Normality of the sam­
pling distribution of statistics that theory doesn’t easily handle. To apply the 
bootstrap idea, we must start with a statistic that estimates the parameter we 
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are interested in. We come up with a suitable statistic by appealing to another 
principle that we have often applied without thinking about it. 

The pLug-In prInCIpLe 

To estimate a parameter, a quantity that describes the population, use the 
statistic that is the corresponding quantity for the sample. 

The plug-in principle tells us to estimate a population mean m by the 
sample mean x and a population standard deviation s by the sample standard 
deviation s. Estimate a population median by the sample median and a 
population regression line by the least-squares line calculated from a sample. 
The bootstrap idea itself is a form of the plug-in principle: substitute the data 
for the population and then draw samples (resamples) to mimic the process 
of building a sampling distribution. 

using software 
Software is essential for bootstrapping in practice. Here is an outline of the 
program you would write if your software can choose random samples from 
a set of data but does not have bootstrap functions: 

Repeat B times { 
Draw a resample with replacement from the data. 
Calculate the resample statistic. 
Save the resample statistic into a variable. 

} 
Make a histogram and Normal quantile plot of the B resample statistics. Calculate  
the standard deviation of the B statistics. 

EXAMPLE 16.3
  

FACE4 

using software.  R has packages that contain various bootstrap functions, so 
we do not have to write them ourselves. If the 21 viewing times are saved 
as a variable, we can use functions to resample from the data, calculate the 
means of the resamples, and request both graphs and printed output. We 
can also ask that the bootstrap results be saved for later access. 

The function plot.boot will generate graphs similar to those in Figure 16.3   
so you can assess Normality. Figure 16.5 contains the default output from a 
call of the function boot. The variable Time contains the 21 viewing times, the 
function theta is specified to be the mean, and we request 3000 resamples. 

 FigurE 16.5 R output for the 
Facebook profile viewing time 
bootstrap, Example 16.3. 

Call: 
boot(data = Time, statistic = theta, R = 3000) 

Bootstrap Statistics : 

original 

t1* 7.870476 

bias std. error 

0.02295317 1.216978 

ORDINARY NONPARAMETRIC BOOTSTRAP 
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The original entry gives the mean x 5 7.87 of the original sample. Bias is the 
difference between the mean of the resample means and the original mean. 
If we add the entries for bias and original, we get the mean of the resample 
means, meanboot: 

7.87 1 0.02 5 7.89 

The bootstrap standard error is displayed under std. error. All these values 
except original will differ a bit if you take another 3000 resamples because 
resamples are drawn at random. 

SEcTion 16.1  SUMMARy 
●  To bootstrap a statistic such as the sample mean, draw hundreds of  
resamples with replacement from a single original sample, calculate the 
statistic for each resample, and inspect the bootstrap distribution of the 
resample statistics. 

●  A bootstrap distribution approximates the sampling distribution of the  
statistic. This is an example of the plug-in principle: use a quantity based  
on the sample to approximate a similar quantity from the population. 

●  A bootstrap distribution usually has approximately the same shape and 
spread as the sampling distribution. It is centered at the statistic (from the 
original sample) while the sampling distribution is centered at the parameter 
(of the population). 

●  Use graphs and numerical summaries to determine whether the bootstrap 
distribution is approximately Normal and centered at the original statistic 
and to assess its spread. The bootstrap standard error is the standard  
deviation of the bootstrap distribution. 

●  The bootstrap does not replace or add to the original data. We use the 
bootstrap distribution as a way to estimate the sampling distribution of a 
statistic based on the original data. 

SEcTion 16.1  EXERCISES 
For Exercises 16.1 and 16.2, see pages 16-7–16-8. 

16.3  Gosset’s data on double stout sales. William 
Sealy Gosset worked at the Guinness Brewery in Dublin 
and made substantial contributions to the practice of 
statistics. In Exercise 1.65 (page 48), we examined 
Gosset’s data on the change in the double stout market 
before and after World War I (1914–1918). For various 
regions in England and Scotland, he calculated the ratio 
of sales in 1925, after the war, as a percent of sales in 
1913, before the war. Here are the data for a sample of 
six of the regions in the original data: STOUT6 

Bristol 94 Glasgow 66 

English P 46 Liverpool 140 

English Agents 78 Scottish 24 

(a) Do you think that these data appear to be from a 
Normal distribution? Give reasons for your answer. 

(b) Select five resamples from this set of data. 

(c) Compute the mean for each resample. 

16.4  Find the bootstrap standard error. Refer to your 
work in the previous exercise. STOUT6 

(a) Would you expect the bootstrap standard error to be 
larger, smaller, or approximately equal to the standard 
deviation of the original sample of six regions? Explain 
your answer. 

(b) Find the bootstrap standard error. 

16.5  Read the output. Figure 16.6 gives a histogram 
and a Normal quantile plot for 3000 resample means 
from R. Interpret these plots. 
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FigurE 16.6 R output for the 
change in double stout sales 20 60 
bootstrap, Exercise 16.5. 

100 140 –3 –2 –1 0 1 2 3 
t* Normal Score 
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ORDINARY NONPARAMETRIC BOOTSTRAP
 

Call:
 
boot(data = stout, statistic = theta, R = 3000)
 

Bootstrap Statistics :
 

original bias std.error
 

t1* 74.66667 -0.2038889 14.90047
 

FigurE 16.7 R output for the change in double stout 
sales bootstrap, Exercise 16.6. 

16.6  Read the output. Figure 16.7 gives output from R 
for the sample of regions in Exercise 16.3. Summarize 
the results of the analysis using this output. 

16.7  What’s wrong? Explain what is wrong with each of 
the following statements. 

(a) The standard deviation of the bootstrap distribution 
will be approximately the same as the standard deviation 
of the original sample. 

(b) The bootstrap distribution is created by resampling 
without replacement from the original sample. 

(c) When generating the resamples, it is best to use a 
sample size smaller than the size of the original sample. 

(d) The bootstrap distribution is created by resampling 
with replacement from the population. 

Inspecting the bootstrap distribution of a statistic helps 
us judge whether the sampling distribution of the sta­
tistic is close to Normal. Bootstrap the sample mean x  
for each of the data sets in Exercises 16.8 through 16.12 
using 2000 resamples. Construct a histogram and a 
Normal quantile plot to assess Normality of the boot­
strap distribution. On the basis of your work, do you 
expect the sampling distribution of x to be close to Nor­
mal? Save your bootstrap results for later analysis. 

16.8  Bootstrap distribution of average IQ score.   
The distribution of the 60 IQ test scores in Table 1.1 
(page 14) is roughly Normal (see Figure 1.7) and the 
sample size is large enough that we expect a Normal 
sampling distribution.

16.9  Bootstrap distribution of StubHub! prices. We  
examined the distribution of the 518 tickets for the 
National Collegiate Athletic Association (NCAA) Women’s 
Final Four Basketball Championship posted for sale on 
StubHub! on June 28, 2014, in Example 1.48 (page 69). 
The distribution is clearly not Normal; it has three peaks 
possibly corresponding to three types of seats. We view 
these data as coming from a process that gives seat prices 
for an event such as this. 

16.10  Bootstrap distribution of time spent watching  
traditional television. The hours per week spent watching  

 IQ 

STUB1 
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traditional television in a random sample of eight full-time  
U.S. college students (Example 7.1, page 411) are 

3.0  16.5  10.5  40.5  5.5  33.5  0.0  6.5 

The distribution has no outliers, but we cannot comfortably  
assess Normality from such a small sample. TVTIME 

16.11  Bootstrap distribution of Titanic  passenger 
ages. In Example 1.36 (page 52), we examined the 
distribution of the ages of the passengers on the Titanic.  
There is a single mode around 25, a short left tail, and a 
long right tail. We view these data as coming from a 
process that would generate similar data. TITANIC 

16.12  Bootstrap distribution of average audio file  
length. The lengths (in seconds) of audio files found on an  
iPod (Table 7.5, page 470) are skewed. We previously  
transformed the data prior to using t procedures. SONGS 

16.13  Standard error versus the bootstrap standard 
error. We have two ways to estimate the standard 
deviation of a sample mean x: use the formula syÏn for 
the standard error, or use the bootstrap standard error. 

(a) Find the sample standard deviation s for the 60 IQ 
test scores in Exercise 16.8 and use it to find the standard 
error syÏn of the sample mean. How closely does your 
result agree with the bootstrap standard error from your 
resampling in Exercise 16.8? 

(b) Find the sample standard deviation s for the 
StubHub! ticket price data in Exercise 16.9 and use it to 
find the standard error syÏn of the sample mean. How 
closely does your result agree with the bootstrap standard 
error from your resampling in Exercise 16.9? 

(c) Find the sample standard deviation s for the eight  
traditional television viewing times in Exercise 16.10 and  

use it to find the standard error syÏn of the sample mean.  
How closely does your result agree with the bootstrap  
standard error from your resampling in Exercise 16.10? 

16.14  Service center call lengths. Table 1.2 (page 17) 
gives the service center call lengths for a sample of 80 
calls. See Example 1.15 (page 15) for more details about 
these data. CALLS80 

(a) Make a histogram of the call lengths. The distribution 
is strongly skewed. 

(b) The central limit theorem says that the sampling  
distribution of the sample mean x becomes Normal as the  
sample size increases. Is the sampling distribution roughly  
Normal for n 5 80? To find out, bootstrap these data using  
1000 resamples and inspect the bootstrap distribution of  
the mean. The central part of the distribution is close to  
Normal. In what way do the tails depart from Normality? 

16.15  More on service center call lengths. Here is an 
SRS of 10 of the service center call lengths from Exercise 
16.14: CALLS10 

104 102 35 211 56 325 67 9 179 59         

We expect the sampling distribution of x to be less close 
to Normal for samples of size 10 than for samples of size 
80 from a skewed distribution. 

(a) Create and inspect the bootstrap distribution of 
the sample mean for these data using 1000 resamples. 
Compared with your distribution from the previous 
exercise, is this distribution closer to or farther away 
from Normal? 

(b) Compare the bootstrap standard errors for your two 
sets of resamples. Why is the standard error larger for the 
smaller SRS? 

16 . 2  First steps in using the Bootstrap 

When you complete 
this section, you will 
be able to: 

● Determine when it is appropriate to use the bootstrap standard error and 
the t distribution to find a confidence interval. 

●  Use the bootstrap standard error and the t distribution to find a 
confidence interval. 

To introduce the key ideas of resampling and bootstrap distributions, we 
studied an example in which we knew quite a bit about the actual sampling 
distribution. We saw that the bootstrap distribution agrees with the sampling 
distribution in shape and spread. 

The center of the bootstrap distribution is not the same as the center of 
the sampling distribution. The sampling distribution of a statistic used to 
estimate a parameter is centered at the actual value of the parameter in the 
population, plus any bias. The bootstrap distribution is centered at the value 
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of the statistic for the original sample, plus any bias. The key fact is that  
the two biases are similar even though the two centers may not be. 

The bootstrap method is most useful in settings where we don’t know the 
sampling distribution of the statistic. The principles are 

●  Shape: Because the shape of the bootstrap distribution approximates the 
shape of the sampling distribution, we can use the bootstrap distribution to 
check Normality of the sampling distribution. 

LOOK BACK 

bias,  
p. 287 

●  Center: A statistic is biased as an estimate of the parameter if its sampling 
distribution is not centered at the true value of the parameter. We can check 
bias by seeing whether the bootstrap distribution of the statistic is centered 
at the value of the statistic for the original sample. 

bootstrap estimate of bias 

More precisely, the bias of a statistic is the difference between the 
mean of its sampling distribution and the true value of the parameter. 
The bootstrap estimate of bias is the difference between the mean of the 
bootstrap distribution and the value of the statistic in the original sample. 

●  Spread: The bootstrap standard error of a statistic is the standard 
deviation of its bootstrap distribution. The bootstrap standard error 
estimates the standard deviation of the sampling distribution of the statistic. 

Bootstrap t confidence intervals 
If the bootstrap distribution of a statistic shows a Normal shape and small bias,  
we can get a confidence interval for the parameter by using the bootstrap stan­
dard error and the familiar t distribution. An example will show how this works. 

EXAMPLE 16.4 grade point averages.  A study of college students at a large university 
looked at grade point average (GPA) after three semesters of college as a  
measure of success. In Example 11.1 (page 608), we examined predictors  
of GPA. Let’s take a look at the distribution of the GPA for the 150 students  
in this study. 

A histogram is given in Figure 16.8(a). The Normal quantile plot is given 
in Figure 16.8(b). The distribution is strongly skewed to the left. The Normal 
quantile plot suggests that there are several students with perfect (4.0) 
GPAs and one at the lower end of the distribution (0.0). These data are not 
Normally distributed. 

The first step is to abandon the mean as a measure of center in favor of a  
statistic that focuses on the central part of the distribution. We might choose  
the  median, but in this case, we will use the 25% trimmed mean, the mean  
of  the middle 50% of the observations. The median is the middle observation or  
the mean of the two middle observations. The trimmed mean often does a better  
job of representing the average of typical observations than does the median. 

Our parameter  is the 25% trimmed mean of the population of college student  
GPAs after three semesters at this large university. By the plug-in principle,  
the statistic  that estimates this parameter is the 25% trimmed mean of the  
sample of 150 students. Because 25% of 150 is 37.5, we drop the 37 lowest and  
37 highest GPAs and find the mean of the remaining 76 GPAs. The statistic is 

x25% 5 2.950 

GPA 

LOOK BACK 

trimmed 
mean,  

p. 51 
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FigurE 16.8 Histogram and Normal quantile plot for 150 grade point averages, 
Example 16.4. The distribution is strongly skewed. 

Given the relatively large sample size from this strongly skewed distribu­
tion, we can use the central limit theorem to argue that the sampling distribu­
tion would be approximately Normal with mean near 2.950. Estimating its 
standard deviation, however, is a more difficult task. We can’t simply use the 
standard error of the sample mean based on the remaining 76 observations, 
as that will underestimate the true variability. 

Fortunately, we don’t need any distribution facts to use the bootstrap. 
We bootstrap the 25% trimmed mean just as we bootstrapped the sample 
mean: draw 3000 resamples of size 150 from the 150 GPAs, calculate the 25% 
trimmed mean for each resample, and form the bootstrap distribution from 
these 3000 values. 

Figure 16.9 shows the bootstrap distribution of the 25% trimmed mean. 
Here is the summary output from R: 

ORDINARy NONPARAMETRIC BOOTSTRAP 

Call:
 
boot(data 5 GPA, statistic 5 theta, R 5 3000)
 

Bootstrap Statistics :
  original            bias        std. error 

t1*  2.949605 20.002912   0.0778597 

What do we see? 
Shape:  The bootstrap distribution is close to Normal. This suggests that 

the sampling distribution of the trimmed mean is also close to Normal. 
Center:  The bootstrap estimate of bias is 20.003, which is small relative to the  

value 2.950 of the statistic. So the statistic (the trimmed mean of the sample) has  
small bias as an estimate of the parameter (the trimmed mean of the population). 
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(a) (b) 
FigurE 16.9 The bootstrap distribution of the 25% trimmed means for 3000 resamples 
from the GPA data in Example 16.4. The bootstrap distribution is approximately Normal. 

Spread: The bootstrap standard error of the statistic is 

SEboot  5 0.078 

This is an estimate of the standard deviation of the sampling distribution of 
the trimmed mean. 

Recall the familiar one-sample t confidence interval (page 411) for the 
mean of a Normal population: 

s 
x 6 t*SE 5 x 6 t* 

Ïn 

This interval is based on the Normal sampling distribution of the sample 
mean x and the formula SE 5 syÏn for the standard error of x. When a boot­
strap distribution is approximately Normal and has small bias, we can essen­
tially use the same idea with the bootstrap standard error to get a confidence 
interval for any parameter. 

BOOTsTrAp t COnFIdenCe InTervAL 

Suppose that the bootstrap distribution of a statistic from an SRS of size n  
is approximately Normal and that the bootstrap estimate of bias is small. 
An approximate level C confidence interval for the parameter that cor­
responds to this statistic by the plug-in principle is 

statistic 6 t*SEboot 

where SEboot is the bootstrap standard error for this statistic and t* is the 
critical value of the t(n  2 1) distribution with area C between 2t* and t*. 
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EXAMPLE 16.5 

GPA 

Bootstrap distribution of the trimmed mean.  We  want to estimate the 25% 
trimmed mean of the population of all college student GPAs after three 
semesters at this large university. We have an SRS of size n  5 150 but  
use only the middle 76 observations for our estimate. The preceding software 
output shows that the trimmed mean of this sample is x25%  5  2.950 and 
that the bootstrap standard error of this statistic is SEboot  5 0.078. A 95% 
confidence interval for the population trimmed mean is, therefore, 

x25% 6 t*SEboot 5 2.950 6 (2.000)(0.078) 

5 2.950 6 0.156 

5 (2.794, 3.106) 

Because Table D does not have entries for [n  2 2(37)] 2 1 5 75 degrees of 
freedom, we used t* 5 2.000, the entry for 60 degrees of freedom. 

We are 95% confident that the 25% trimmed mean (the mean of the 
middle 50%) for the population of college student GPAs after three semesters 
at this large university is between 2.794 and 3.106. 

uSE Your KnoWLEdgE 

SONGS 

16.16 Bootstrap  t confidence interval.  Recall Example 16.1 (page 16-3). 
Suppose a bootstrap distribution was created using 3000 resamples 
and that the mean and standard deviation of the resample means 
were 7.91 and 1.26, respectively. 

(a) What is the bootstrap estimate of the bias? 

(b) What is the bootstrap standard error of x? 

(c) Assume that the bootstrap distribution is reasonably Normal. 
Because the bias is small relative to the observed x, the bootstrap t  
confidence interval for the population mean m  is justified. Give the 
95% bootstrap t confidence interval for m. 

16.17  Bootstrap t confidence interval for average audio file length.   
Return to or create the bootstrap distribution resamples on the 
sample mean for audio file length in Exercise 16.12 (page 16-12). In 
Example 7.25 (page 470), the t confidence interval was applied to the 
logarithm of the time measurements. 

(a) Inspect the bootstrap distribution. Is a bootstrap t confidence 
interval appropriate? Explain why or why not. 

(b) Construct the 95% bootstrap t confidence interval. 

(c) Compare the bootstrap results with the t confidence interval 
reported in Example 7.26 (page 471). 

Bootstrapping to compare two groups 
Two-sample problems are among the most common statistical settings. In a 
two-sample problem, we wish to compare two populations, such as male and 
female college students, based on separate samples from each population. 
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LOOK BACK 

two-sample 
t confidence 

interval,  
p. 437 

When both populations are roughly Normal, the two-sample t procedures 
compare the two population means. The bootstrap can also compare two 
populations, without the Normality condition and without the restriction 
to a comparison of means. The most important new idea is that bootstrap 
resampling must mimic the “separate samples’’ design that produced the 
original data. 

BOOTsTrAp FOr COmpArIng TwO pOpuLA TIOns 

Given independent SRSs of sizes n and m from two populations: 

1.  Draw a resample of size n with replacement from the first sample and 
a separate resample of size m from the second sample. Compute a 
statistic that compares the two groups, such as the difference between 
the two sample means. 

2.  Repeat this resampling process thousands of times. 

3.  Construct the bootstrap distribution of the statistic. Inspect its shape, 
bias, and bootstrap standard error in the usual way. 

Bootstrap comparison of gpAs.  In Example 16.4, we looked at grade point  
average (GPA) after three semesters of college as a measure of success.  
How do GPAs compare between men and women? Figure 16.10 shows  
density curves and Normal quantile plots for the GPAs of 91 males and  

EXAMPLE 16.6 

 

GPA 

Male 
Female 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

D
en

si
ty

G
PA

 

0 

1 

2 

3 

4 

0 1 2 3 4 –2 –1 0 1 2 
GPA Normal score 

(a) (b) 

FigurE 16.10 Density curves and Normal quantile plots of the distributions of GPA for 
males and females, Example 16.6. 
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59 females. The distributions are both far from Normal. Here are some  
summary statistics: 

Sex n x s 

Male 91   2.784 0.859 
Female 59   2.933 0.748 
Difference 20.149 

   

The data suggest that GPAs tend to be slightly higher for females. The mean 
GPA for females is roughly 0.15 higher than the mean for males. 

In the setting of Example 16.6, we want to estimate the difference between  
population means, m1  2  m2. We might be somewhat reluctant to use the  
two-sample t confidence interval because both samples are very skewed. To  
compute the bootstrap standard error for the difference in sample means  
x1 2 x2, resample separately from the two samples. Each of our 3000 resamples  
consists of two group resamples, one of size 91 drawn with replacement from  
the male data and one of size 59 drawn with replacement from the female data. 

For each combined resample, compute the statistic x1 2 x2. The 3000 dif­
ferences form the bootstrap distribution. The bootstrap standard error is the 
standard deviation of the bootstrap distribution. 

The boot function in R automates this bootstrap procedure. Here is the R 
output: 

STRATIFIED BOOTSTRAP 

Call: 
boot(data = gpa, statistic = meanDiff, R = 3000, strata = sex) 

Bootstrap Statistics : 
  original      bias      std.  error 

t1* -0.1 490259   0.003989901 0.1 327419 

Figure 16.11 shows that the bootstrap distribution is close to Normal. We 
can trust the bootstrap t confidence interval for these data. A 95% confidence 
interval for the difference in mean GPAs (males versus females) is, therefore, 

 

x25% 6 t*SEboot 5 20.149 6 (2.009)(0.133) 

5 20.149 6 0.267 

5 (20.416, 0.118) 

Because Table D does not have entries for min(n1  2 1, n2  2 1) 5 58 degrees of 
freedom, we used t* 5 2.009, the entry for 50 degrees of freedom. 

We are 95% confident that the difference in the mean GPAs of males and 
females at this large university after three semesters is between 20.416 and 
0.118. Because 0 is in this interval, we cannot conclude that the two popula­
tion means are different. We discuss hypothesis testing in Section 16.5. 

In this example, the bootstrap distribution of the difference is close to 
Normal. When the bootstrap distribution is non-Normal, we can’t trust the 
bootstrap t confidence interval. Fortunately, there are more general ways of 
using the bootstrap to get confidence intervals that can be safely applied when 
the bootstrap distribution is not Normal. These methods, which we discuss in 
Section 16.4, are the next step in practical use of the bootstrap. 
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FigurE 16.11 The bootstrap distribution and Normal quantile plot for the differences in 
means for the GPA data. 
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16.18  Bootstrap comparison of average reading abilities.  Table 7.3 
(page 437) gives the scores on a test of reading ability for two groups 
of third-grade students. The treatment group used “directed reading 
activities’’ and the control group followed the same curriculum with­
out the activities. 

(a) Bootstrap the difference in means x1 2 x2 and report the boot­
strap standard error. 

(b) Inspect the bootstrap distribution. Is a bootstrap t confidence 
interval appropriate? If so, give a 95% confidence interval. 

(c) Compare the bootstrap results with the two-sample t confidence 
interval reported in Example 7.14 on page 441. 

16.19  Formula-based versus bootstrap standard error.  We have a  
formula (page 436) for the standard error of x1 2 x2. This formula 
does not depend on Normality. How does this formula-based stan­
dard error for the data of Example 16.6 compare with the bootstrap 
standard error? 

GPA 

BEYond THE BASicS 

The Bootstrap for a Scatterplot Smoother 
The bootstrap idea can be applied to quite complicated statistical 
methods, such as the scatterplot smoother illustrated in Chapter 2  
(page 94). 
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EXAMPLE 16.7 do all daily numbers have an equal payoff?  The New Jersey Pick-It Lottery is 
a daily numbers game run by the state of New Jersey. We’ll analyze the first 
254 drawings after the lottery was started in 1975.4 Buying a ticket entitles 
a player to pick a number between 000 and 999. Half the money bet each 
day goes into the prize pool. (The state takes the other half.) The state picks 
a winning number at random, and the prize pool is shared equally among 
all winning tickets. 

Although all numbers are equally likely to win, numbers chosen by fewer 
people have bigger payoffs if they win because the prize is shared among 
fewer tickets. Figure 16.12 is a scatterplot of the first 254 winning numbers 
and their payoffs. What patterns can we see? 
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FigurE 16.12 The first 254 winning numbers in the New Jersey Pick-It Lottery and 
the payoffs for each, Example 16.7. To see patterns, we use least-squares regression 
(dashed line) and a scatterplot smoother (curve). 

The straight line in Figure 16.12 is the least-squares regression line. The 
line shows a general trend of higher payoffs for larger winning numbers. The 
curve in the figure was fitted to the plot by a scatterplot smoother that follows 
local patterns in the data rather than being constrained to a straight line. The 
curve suggests that there were larger payoffs for numbers in the intervals 000 
to 100, 400 to 500, 600 to 700, and 800 to 999. 

Are the patterns displayed by the scatterplot smoother just chance? We can 
use the bootstrap distribution of the smoother’s curve to get an idea of how 
much random variability there is in the curve. Each resample “statistic’’ is 
now a curve rather than a single number. Figure 16.13 shows the curves that 
result from applying the smoother to 20 resamples from the 254 data points in 
Figure 16.12. The original curve is the thick line. The spread of the resample 
curves about the original curve shows the sampling variability of the output 
of the scatterplot smoother. 
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FigurE 16.13 The curves produced by the scatterplot smoother for 20 resamples 
from the data displayed in Figure 16.12. The curve for the original sample is the 
heavy line. 

Nearly all the bootstrap curves mimic the general pattern of the original 
smoother curve, showing, for example, the same low average payoffs for num­
bers in the 200s and 300s. This suggests that these patterns are real, not just 
chance. In fact, when people pick “random’’ numbers, they tend to choose 
numbers starting with 2, 3, 5, or 7, so these numbers have lower payoffs. This 
pattern disappeared after 1976; it appears that players noticed the pattern and 
changed their number choices. 

SEcTion 16.2  SUMMARy 
●  Bootstrap distributions mimic the shape, spread, and bias of sampling 
distributions. 

●  The bootstrap standard error,  SEboot, of a statistic is the standard  
deviation of its bootstrap distribution. It measures how much the statistic 
varies under random sampling. 

●  The bootstrap estimate of the bias of a statistic is the mean of the  
bootstrap distribution minus the statistic for the original data. Small bias 
means that the bootstrap distribution is centered at the statistic of the  
original sample and suggests that the sampling distribution of the statistic  
is centered at the population parameter. 

●  The bootstrap can estimate the sampling distribution, bias, and standard 
error of a wide variety of statistics, such as the trimmed mean, whether or 
not statistical theory tells us about their sampling distributions. 

●  If the bootstrap distribution is approximately Normal and the bias is 
small, we can give a bootstrap t confidence interval,  statistic  6  t*SEboot, 



16_Moore_13387_Ch16_01-57.indd   22 06/10/16   9:54 PM

 16-22 Chapter 16 Bootstrap Methods and Permutation Tests 

 

for the parameter. Do not use this t interval if the bootstrap distribution is 
not Normal or shows substantial bias. 

●  To use the bootstrap to compare two populations, draw separate   
resamples from each sample and compute a statistic that compares the  
two groups. Repeat many times and use the bootstrap distribution for  
inference. 

SEcTion 16.2  EXERCISES 
For Exercises 16.16 and 16.17, see page 16-16; and for 
Exerscises 16.18 and 16.19, see page 16-19. 

16.20  Should you use the bootstrap standard error 
and the t distribution for the confidence interval?  
For each of the following situations, explain whether or 
not you would use the bootstrap standard error and the t  
distribution for the confidence interval. Give reasons for 
your answers. 

(a) The bootstrap distribution of the mean is 
approximately Normal, and the difference between 
the mean of the data and the mean of the bootstrap 
distribution is large relative to the mean of the data. 

(b) The bootstrap distribution of the mean is 
approximately Normal, and the difference between 
the mean of the data and the mean of the bootstrap 
distribution is small relative to the mean of the data. 

(c) The bootstrap distribution of the mean is clearly 
skewed, and the difference between the mean of the 
data and the mean of the bootstrap distribution is large 
relative to the mean of the data. 

(d) The bootstrap distribution of the mean is clearly 
skewed, and the difference between the mean of the 
data and the mean of the bootstrap distribution is small 
relative to the mean of the data. 

16.21  Use the bootstrap standard error and the t  
distribution for the confidence interval. The observed 
mean is 108.7, the mean of the bootstrap distribution 
is 109.8, the standard error is 8.2, and n  5 41. Use the t  
distribution to find the 95% confidence interval. 

16.22  Bootstrap t confidence interval for the StubHub!
prices. In Exercise 16.9 (page 16-11), we examined the  
bootstrap for the prices of tickets to the NCAA Women’s  
Final Four Basketball Championship. STUB1 

(a) Find the bootstrap t 95% confidence interval for these 
data. 

(b) Compare the interval you found in part (a) with the 
usual t interval. 

(c) Which interval do you prefer? Give reasons for your 
answer. 

16.23  Bootstrap t confidence interval for the ages of 
the Titanic passengers. In Exercise 16.11 (page 16-12), 
we examined the bootstrap for the ages of the Titanic  
passengers. TITANIC 

(a) Find the bootstrap t 95% confidence interval for these 
data. 

(b) Compare the interval you found in part (a) with the 
usual t interval. 

(c) Which interval do you prefer? Give reasons for your 
answer. 

16.24  Bootstrap t confidence interval for time spent  
watching traditional television. Return to or re-create  
the bootstrap distribution of the sample mean for the  
eight times spent watching television in Exercise 16.10  
(page 16-11). TVTIME 

(a) Although the sample is small, verify using graphs and 
numerical summaries of the bootstrap distribution that 
the distribution is reasonably Normal and that the bias is 
small relative to the observed x. 

(b) The bootstrap t confidence interval for the population 
mean m is, therefore, justified. Give the 95% bootstrap t  
confidence interval for m. 

(c) Give the usual t 95% interval and compare it with 
your interval from part (b). 

16.25  Bootstrap t confidence interval for service  
center call lengths. Return to or re-create the bootstrap  
distribution of the sample mean for the 80 service center  
call lengths in Exercise 16.14 (page 16-12).   

CALLS80 

(a) What is the bootstrap estimate of the bias? Verify 
from the graphs of the bootstrap distribution that the 
distribution is reasonably Normal (some right-skew 
remains) and that the bias is small relative to the 
observed x. The bootstrap t confidence interval for the 
population mean m is, therefore, justified. 

(b) Give the 95% bootstrap t confidence interval for m. 

(c) The only difference between the bootstrap t and 
usual one-sample t confidence intervals is that the 
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bootstrap interval uses SEboot in place of the formula-
based standard error syÏn. What are the values of the 
two standard errors? Give the usual t 95% interval and 
compare it with your interval from part (b). 

16.26  Another bootstrap distribution of the trimmed  
mean. Bootstrap distributions and quantities based on them  
differ randomly when we repeat the resampling process. A  
key fact is that they do not differ very much if we use a large  
number of resamples. Figure 16.9 (page 16-15) shows one  
bootstrap distribution of the trimmed mean of the GPA data.  
Repeat the resampling of these data to get another bootstrap  
distribution of the trimmed mean. GPA 

(a) Plot the bootstrap distribution and compare it  
with Figure 16.9. Are the two bootstrap distributions  
similar? 

(b) What are the values of the bias and bootstrap standard  
error for your new bootstrap distribution? How do they  
compare with the previous values given on page 16-15? 

(c) Find the 95% bootstrap t confidence interval based on 
your bootstrap distribution. Compare it with the previous 
result in Example 16.5 (page 16-16). 

16.27  Bootstrap distribution of the standard 
deviation s. For Example 16.5 (page 16-16), we 
bootstrapped the 25% trimmed mean of 150 GPAs. 
Another statistic whose sampling distribution is 
unfamiliar to us is the standard deviation s. Bootstrap s  
for these data. Discuss the shape and bias of the 
bootstrap distribution. Is the bootstrap t confidence 
interval for the population standard deviation s justified? 
If it is, give a 95% confidence interval. GPA 

16.28  Bootstrap comparison of tree diameters. In 
Exercise 7.79 (page 459), you were asked to compare  
the mean diameter at breast height (DBH) for trees  
from the northern and southern halves of a land   
tract using a random sample of 30 trees from each  
region.  NSPINES 

(a) Use a back-to-back stemplot or side-by-side boxplots   
to examine the data graphically. Does it appear reasonable  
to use standard t procedures? 

(b) Bootstrap the difference in means xNorth 2 xSouth  
and look at the bootstrap distribution. Does it meet the 
conditions for a bootstrap t confidence interval? 

(c) Report the bootstrap standard error and the 95% 
bootstrap t confidence interval. 

(d) Compare the bootstrap results with the usual two-
sample t confidence interval. 

16.29  Bootstrapping a Normal data set. The following 
data are “really Normal.’’ They are an SRS from the 
standard Normal distribution N(0, 1), produced by a 
software Normal random number generator. NORMALD 

    0.01 20.04 21.02 20.13 20.36 20.03 21.88     0.34 20.00 1.21 

20.02 21.01     0.58     0.92 21.38 20.47 20.80     0.90 21.16 0.11 

    0.23     2.40     0.08 20.03     0.75     2.29 21.11 22.23     1.23 1.56 

20.52     0.42 20.31     0.56     2.69     1.09     0.10 20.92 20.07 21.76 

    0.30 20.53     1.47     0.45     0.41     0.54     0.08     0.32 21.35 22.42 

    0.34     0.51     2.47     2.99 21.56     1.27     1.55     0.80 20.59 0.89 

22.36     1.27 21.11     0.56 21.12     0.25     0.29     0.99     0.10 0.30 

    0.05     1.44 22.46     0.91     0.51     0.48     0.02 20.54 

(a) Make a histogram and Normal quantile plot. Do the  
data appear to be “really Normal’’? From the histogram,  
does the N(0, 1) distribution appear to describe the data  
well? Why? 

(b) Bootstrap the mean. Why do your bootstrap results 
suggest that t confidence intervals are appropriate? 

(c) Give both the bootstrap and the formula-based  
standard errors for x. Give both the bootstrap and usual  
t 95% confidence intervals for the population mean m. 

16.30  Bootstrap distribution of the median. We will 
see in Section 16.3 that bootstrap methods often work 
poorly for the median. To illustrate this, bootstrap the 
sample median of the 21 viewing times we studied in 
Example 16.1 (page 16-3). Why is the bootstrap t  
confidence interval not justified? FACE4 

16.31  Bootstrap distribution of the mpg standard  
deviation. Computers in some vehicles calculate various  
quantities related to performance. One of these is the  
fuel efficiency, or gas mileage, usually expressed as miles  
per gallon (mpg). For one vehicle equipped in this way,  
the mpg were recorded each time the gas tank was filled,  
and the computer was then reset. We studied these data  
in Exercise 7.32 (page 429) using methods based on  
Normal distributions.5   MPG20 

 41.5   50.7   36.6   37.3   34.2   45.0   48.0   43.2   47.7  42.2 

 43.2   44.6   48.4   46.4   46.8   39.2   37.3   43.5   44.3  43.3 

In addition to the average mpg, the driver is also 
interested in how much variability there is in the mpg. 

(a) Calculate the sample standard deviation s for these 
mpg values. 

(b) We have no formula for the standard error of s. Find 
the bootstrap standard error for s. 

(c) What does the standard error indicate about how 
accurate the sample standard deviation is as an estimate 
of the population standard deviation? 

(d) Would it be appropriate to give a bootstrap t interval  
for the population standard deviation? Why or why not? 
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16 . 3  how Accurate Is a Bootstrap distribution?
 

When you complete
this section, you will 
be able to: 

●  Describe the effect of the size of the original sample on the variation in 
bootstrap distributions. 

●  Describe the effect of the number of resamples on the variation in 
bootstrap distributions. 

We said earlier that “When can I safely bootstrap?’’ is a somewhat subtle issue. 
Now we will give some insight into this issue. 

Because a statistic varies sample to sample, inference about the popula­
tion must take this random variation into account. The sampling distribution 
of a statistic displays the variation in the statistic due to selecting samples at 
random from the population. For example, the margin of error in a confidence 
interval expresses the uncertainty due to sampling variation. In this chap­
ter, we have used the bootstrap distribution as a substitute for the sampling 
distribution. This introduces a second source of random variation: choosing 
resamples at random from the original sample. 

sOurCes OF v ArIATIOn In A BOOTsTrAp dIsTrIBuTIOn 

Bootstrap distributions and conclusions based on them include two 
sources of random variation: 

1.  Choosing an original sample at random from the population. 

2.  Choosing bootstrap resamples at random from the original sample. 

A statistic in a given setting has only one sampling distribution. It has 
many bootstrap distributions, formed by the two-step process just described. 
Bootstrap inference generates one bootstrap distribution and uses it to tell us 
about the sampling distribution. Can we trust such inference? 

Figure 16.14 displays an example of the entire process. The population 
distribution (top left) has two peaks and is far from Normal. The histograms in 
the left column of the figure show five random samples from this population, 
each of size 50. The line in each histogram marks the mean x of that sample. 
These vary from sample to sample. The distribution of the x-values from all 
possible samples is the sampling distribution. This sampling distribution 
appears to the right of the population distribution. It is close to Normal, as we 
expect because of the central limit theorem. 

The middle column in Figure 16.14 displays the bootstrap distribution  
of x  for each of the five samples. Each distribution was created by drawing  
1000 resamples from the original sample, calculating x for each resample,  
and presenting the 1000 x’s in a histogram. The right column shows the  
bootstrap distribution of the first sample, repeating the resampling five  
more times. 

Compare the five bootstrap distributions in the middle column to see the 
effect of the random choice of the original sample. Compare the six bootstrap 
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distributions drawn from the first sample to see the effect of the random 
resampling. Here’s what we see: 

●  Each bootstrap distribution is centered close to the value of x for its original  
sample. That is, the bootstrap estimate of bias is small in all five cases. Of  
course, the five x-values vary, and not all are close to the population mean m. 

●  The shape and spread of the bootstrap distributions in the middle column 
vary a bit, but all five resemble the sampling distribution in shape and 
spread. That is, the shape and spread of a bootstrap distribution depend on 
the original sample, but the variation from sample to sample is not great. 

●  The six bootstrap distributions from the same sample are very similar 
in shape, center, and spread. That is, random resampling adds very little 
variation to the variation due to the random choice of the original sample from 
the population. 

Figure 16.14 reinforces facts that we have already relied on. If a bootstrap 
distribution is based on a moderately large sample from the population, its 
shape and spread don’t depend heavily on the original sample and do mimic 
the shape and spread of the sampling distribution. Bootstrap distributions do 
not have the same center as the sampling distribution; they mimic bias, not 
the actual center. 

The figure also illustrates a fact that is important for practical use of 
the bootstrap: the bootstrap resampling process (using 1000 or more resa­
mples) introduces very little additional variation. We can rely on a bootstrap 
distribution to inform us about the shape, bias, and spread of the sampling 
distribution. 

Bootstrapping small samples 
We now know that almost all the variation in bootstrap distributions for a 
statistic such as the mean comes from the random selection of the original 
sample from the population. We also know that, in general, larger samples are 
preferred because small samples give more variable results. This general fact 
is also true for bootstrap procedures. 

Figure 16.15 repeats Figure 16.14, with two important differences. The five 
original samples are only of size n  5 9, rather than the n  5 50 of Figure 16.14. 
Also, the population distribution (top left) is Normal, so that the sampling 
distribution of x is Normal despite the small sample size. 

Even with a Normal population distribution, the bootstrap distributions in 
the middle column show much more variation in shape and spread than those 
for larger samples in Figure 16.14. Notice, for example, how the skewness of 
the fourth sample produces a skewed bootstrap distribution. The bootstrap 
distributions are no longer all similar to the sampling distribution at the top 
of the column. 

We can’t trust a bootstrap distribution from a very small sample to closely 
mimic the shape and spread of the sampling distribution. Bootstrap confidence 
intervals will sometimes be too long or too short or too long in one direction 
and too short in the other. The six bootstrap distributions based on the first 
sample are again very similar. Because we used 1000 resamples, resampling 
adds very little variation. There are subtle effects that can’t be seen from a few 
pictures, but the main conclusions are clear. 
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vArIATIOn In BOOTsTrAp dIsTrIBuTIOns 

For most statistics, almost all the variation in bootstrap distributions
comes from the selection of the original sample from the population. You
can reduce this variation by using a larger original sample. 

Bootstrapping does not overcome the weakness of small samples as a 
basis for inference. We will describe some bootstrap procedures that are 
usually more accurate than standard methods, but even they may not be 
accurate for very small samples. Use caution in any inference—including 
bootstrap inference—from a small sample. 

The bootstrap resampling process using 1000 or more resamples intro­
duces very little additional variation. 

Bootstrapping a sample median 
In dealing with the grade point averages in Example 16.5, we chose to boot­
strap the 25% trimmed mean rather than the median. We did this in part 
because the usual bootstrapping procedure doesn’t work well for the median 
unless the original sample is quite large. Now we will bootstrap the median in 
order to understand the difficulties. 

Figure 16.16 follows the format of Figures 16.14 and 16.15. The popu­
lation distribution appears at top left, with the population median M marked.  
Below in the left column are five samples of size n  5 15 from this population,  
with their sample medians m marked. Bootstrap distributions of the median  
based on resampling from each of the five samples appear in the middle col­
umn. The right column again displays five more bootstrap distributions from  
resampling the first sample. The six bootstrap distributions from the same  
sample are, once again, very similar to each other—resampling adds little  
variation—so we concentrate on the middle column in the figure. 

Bootstrap distributions from the five samples differ markedly from each 
other and from the sampling distribution at the top of the column. Here’s why. 
The median of a resample of size 15 is the eighth-largest observation in the 
resample. This is always one of the 15 observations in the original sample and 
is usually one of the middle observations. Each bootstrap distribution repeats 
the same few values, and these values depend on the original sample. The 
sampling distribution, on the other hand, contains the medians of all possible 
samples and is not confined to a few values. 

The difficulty is somewhat less when n is even because the median is  
then the average of two observations. It is much less for moderately large  
samples—say, n  5 100 or more. Bootstrap standard errors and confidence  
intervals from such samples are reasonably accurate, though the shapes of  
the bootstrap distributions may still appear odd. You can see that the same  
difficulty will occur for small samples with other statistics, such as the quar­
tiles, that are calculated from just one or two observations from a sample. 

There are more advanced variations of the bootstrap idea that improve 
performance for small samples and for statistics such as the median and 
quartiles. Unless you have expert advice or undertake further study, avoid 
bootstrapping the median and quartiles unless your sample is rather large. 
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SEcTion 16.3  SUMMARy 
●  Almost all the variation in a bootstrap distribution for a statistic is  
due to the selection of the original random sample from the population.  
Resampling introduces little additional variation. 

●  Bootstrap distributions based on small samples can be quite variable. 
Their shape and spread reflect the characteristics of the sample and may  
not accurately estimate the shape and spread of the sampling distribution. 
Bootstrap inference from a small sample may therefore be unreliable. 

●  Bootstrap inference based on samples of moderate size is unreliable for 
statistics like the median and quartiles that are calculated from just a few  
of the sample observations. 

SEcTion 16.3  EXERCISES 

16.32  Variation in the bootstrap distributions.  
Consider the variation in the bootstrap for each of the 
following situations with two scenarios, S1 and S2. In 
comparing the variation, do you expect, in general, that 
S1 will have less variation than S2, that S2 will have less 
variation than S1, or that the variation for S1 and S2 
will be approximately the same? Give reasons for your 
answers. Here, we use n for the size of the original sample 
and B for the number of resamples. 

(a) S1: n  5 50, B  5 2000; S2: n  5 50, B  5 4000. 

(b) S1: n  5 10, B  5 2000; S2: n  5 50, B  5 2000. 

(c) S1: n  5 50, B  5 200; S2: n  5 50, B  5 2000. 

(d) S1: n  5 10, B  5 2000; S2: n  5 50, B  5 4000. 

16.33  Bootstrap versus sampling distribution. Most  
statistical software includes a function to generate samples  
from Normal distributions. Set the mean to 26 and the  
standard deviation to 27. You can think of all the numbers  
that would be produced by this function if it ran forever as  
a population that has the N(26,27) distribution. Samples  
produced by the function are samples from this population. 

(a) What is the exact sampling distribution of the sample 
mean x for a sample of size n from this population? 

(b) Draw an SRS of size n  5 10 from this population. 
Bootstrap the sample mean x using 2000 resamples 
from your sample. Give a histogram of the bootstrap 
distribution and the bootstrap standard error. 

(c) Repeat the same process for samples of sizes n  5 40 
and n  5 160. 

(d) Write a careful description comparing the three 
bootstrap distributions and also comparing them with 
the exact sampling distribution. What are the effects of 
increasing the sample size? 

16.34  The effect of increasing the sample size. In 
Example 1.36, we discussed the distribution of the  

time to start a business for 189 countries. The distribution 
of times is very non-Normal. A histogram with a smooth 
density curve is given in Figure 1.20(a) (page 52). 
However, for this histogram we excluded  
one country, Suriname, where it takes 208 days to  
start a business. Exclude Suriname from the data set  
and use the remaining data for the remaining 188 
countries. TTS 

(a) Let’s think of the 188 countries as the population for 
this exercise. Find the mean m and the standard deviation 
s for this population. 

(b) Although we don’t know the shape of the sampling 
distribution of the sample mean x for a sample of size n  
from this population, we do know the mean and standard 
deviation of this distribution. What are they? 

(c) Draw an SRS of size n  5 10 from this population. 
Bootstrap the sample mean x using 2000 resamples 
from your sample. Give a histogram of the bootstrap 
distribution and the bootstrap standard error. 

(d) Repeat the same process for samples of sizes n  5 40 
and n  5 160. 

(e) Write a careful description comparing the three 
bootstrap distributions. What are the effects of increasing 
the sample size? 

16.35  The effect of non-Normality. The populations  
in the two previous exercises have the same mean and  
standard deviation, but one is Normal and the other  
is strongly non-Normal. Based on your work in these  
exercises, how does non-Normality of the population  
affect the bootstrap distribution of x? How does it   
affect the bootstrap standard error? Do either of these  
effects diminish when we start with a larger sample?  
Explain what you have observed based on what you  
know about the sampling distribution of x and the way  
in which bootstrap distributions mimic the sampling  
distribution. 
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16 . 4  Bootstrap Confidence Intervals
 

When you complete 
this section, you will 
be able to: 

●  Use the bootstrap distribution to find a bootstrap percentile confidence 
interval. 

●  Read software output to find the BCa confidence interval. 

Until now, we have met just one type of inference procedure based on resa­
mpling, the bootstrap t confidence intervals. We can calculate a bootstrap t  
confidence interval for any parameter by bootstrapping the corresponding 
statistic. We don’t need conditions on the population or special knowledge 
about the sampling distribution of the statistic. 

The flexible and almost automatic nature of bootstrap t intervals is appealing— 
but there is a catch. These intervals work well only when the bootstrap  
distribution tells us that the sampling distribution is approximately Normal and  
has small bias. How well must these conditions be met? What can we do if we  
don’t trust the bootstrap t interval? In this section, we will see how to quickly  
check t confidence intervals for accuracy, and we will learn alternative bootstrap  
confidence intervals that can be used more generally than the bootstrap t. 

Bootstrap percentile confidence intervals 
Confidence intervals are based on the sampling distribution of a statistic. If a  
statistic has no bias as an estimator of a parameter, its sampling distribution is  
centered at the true value of the parameter. We can then get a 95% confidence  
interval by marking off the central 95% of the sampling distribution. The t criti­
cal values in a t confidence interval are a shortcut to marking off the central 95%. 

This shortcut doesn’t work under all conditions—it depends both on lack 
of bias and on Normality. One way to check whether t intervals (using either 
bootstrap or formula-based standard errors) are reasonable is to compare 
them with the central 95% of the bootstrap distribution. The 2.5 and 97.5 
percentiles mark off the central 95%. The interval between the 2.5 and 97.5 
percentiles of the bootstrap distribution is often used as a confidence interval 
in its own right. It is known as a bootstrap percentile confidence interval. 

BOOTsTrAp perCenTILe COnFIdenCe InTervALs 

The interval between the 2.5 and 97.5 percentiles of the bootstrap
distribution of a statistic is a 95% bootstrap percentile confidence 
interval for the corresponding parameter. Use this method when the 
bootstrap estimate of bias is small. 

The conditions for safe use of bootstrap t and bootstrap percentile intervals 
are a bit vague. We recommend that you check whether these intervals are 
reasonable by comparing them with each other. If the bias of the bootstrap 
distribution is small and the distribution is close to Normal, the bootstrap t  
and percentile confidence intervals will agree closely. 

Percentile intervals, unlike t intervals, do not ignore skewness. Percentile 
intervals are therefore usually more accurate, as long as the bias is small. Be­
cause we will soon meet a much more accurate bootstrap interval, our 
recommendation is that when bootstrap t and bootstrap percentile intervals do 
not agree closely, neither type of interval should be used. 



16_Moore_13387_Ch16_01-57.indd   32 06/10/16   9:54 PM

 16-32 Chapter 16 Bootstrap Methods and Permutation Tests 

EXAMPLE 16.8 Bootstrap percentile confidence interval for the trimmed mean. In Example  
16.5 (page 16-16), we found that a 95% bootstrap t confidence interval for  
the 25% trimmed mean of GPA for the population of college students after  
three semesters at this large university is between 2.794 and 3.106. The  
bootstrap distribution in Figure 16.9 shows a small bias and, though closely  
Normal, is a bit skewed. Is the bootstrap t  confidence interval accurate for  
these data? 

We can use the quantile function in R to compute the needed percentiles 
of our 3000 resamples. For this bootstrap distribution, the 2.5 and 97.5 
percentiles are 2.793 and 3.095, respectively. These are the endpoints of the 
95% bootstrap percentile confidence interval. This interval is quite close 
to the bootstrap t interval. We conclude that both intervals are reasonably 
accurate. 

The bootstrap t interval for the trimmed mean of GPA in Example 16.8 is 

x25% 6 t*SEboot 5 2.950 6 0.156 

We can learn something by also writing the percentile interval starting at the 
statistic x25% 5 2.950. In this form, it is 

2.950 2 0.157,  2.950 1 0.145 

Unlike the t interval, the percentile interval is not symmetric—its end­
points are different distances from the statistic. The slightly greater dis­
tance to the 2.5 percentile reflects the slight left-skewness of the bootstrap  
distribution. 

uSE Your KnoWLEdgE 

FACE4 

16.36  Determining the percentile endpoints.  What percentiles of the 
bootstrap distribution are the endpoints of a 99% bootstrap percen­
tile confidence interval? How do they change for a 90% bootstrap 
percentile confidence interval? 

16.37	  Bootstrap percentile confidence interval for profile viewing  
time.  Consider the sample of Facebook viewing times in Exercise 16.1  
(page 16-7). Bootstrap the sample mean using 2000 resamples. 

(a) Make a histogram and a Normal quantile plot. Does the bootstrap 
distribution appear close to Normal? Is the bias small relative to the 
observed sample mean? 

(b) Find the 95% bootstrap t confidence interval. 

(c) Give the 95% confidence percentile interval and compare it with 
the interval in part (b). 

A more accurate bootstrap confidence 
 
interval: Bca
 
Any method for obtaining confidence intervals requires some conditions in 
order to produce exactly the intended confidence level. These conditions (for 
example, Normality) are never exactly met in practice. So a 95% confidence 
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interval in practice will not capture the true parameter value exactly 95% of 
the time. 

In addition to “hitting’’ the parameter 95% of the time, a good confidence 
interval should divide its 5% of “misses’’ equally between high misses and low 
misses. We will say that a method for obtaining 95% confidence intervals is 
accurate in a particular setting if 95% of the time it produces intervals that 
capture the parameter and if the 5% of misses are equally shared between high 
and low misses. Perfect accuracy isn’t available in practice, but some methods 
are more accurate than others. 

accurate 

One advantage of the bootstrap is that we can to some extent check the 
accuracy of the bootstrap t and percentile confidence intervals by examining 
the bootstrap distribution for bias and skewness and by comparing the two 
intervals with each other. The interval in Example 16.8 reveals a slight left-
skewness, but not enough to invalidate inference. 

In general, the t and percentile intervals may not be sufficiently accurate 
when 

●  The statistic is strongly biased, as indicated by the bootstrap estimate of bias. 

●  The sampling distribution of the statistic is clearly skewed, as indicated  
by the bootstrap distribution and by comparing the t and percentile  
intervals. 

Most confidence interval procedures are more accurate for larger sample 
sizes. The t  and percentile procedures improve only slowly: they require 
100 times more data to improve accuracy by a factor of 10. (Recall the Ïn in 
the formula for the usual one-sample t  interval.) These intervals may not be 
very accurate except for quite large sample sizes. There are more elaborate 
bootstrap procedures that improve faster, requiring only 10 times more data 
to improve accuracy by a factor of 10. These procedures are quite accurate 
unless the sample size is very small. 

BCa COnFIdenCe InTervALs 

The bootstrap bias-corrected accelerated (BCa) interval is a modifica­
tion of the percentile method that adjusts the percentiles to correct for 
bias and skewness. This interval should always be used over the percentile 
and t intervals if software provides it. 

This method is accurate in a wide variety of settings, has reasonable 
computation requirements (by modern standards), and does not produce ex­
cessively wide intervals. The BCa intervals are among the most widely used 
intervals. Because this interval is related to the percentile method, it is still 
based on the key ideas of resampling and the bootstrap distribution. 

You should always use this more accurate method (or an alternative like 
tilting intervals) if your software offers it. The details of producing confidence 
intervals are quite technical.6 The BCa method requires more than 1000 
resamples for high accuracy. We recommend that you use 5000 or more 
resamples. Don’t forget that even BCa confidence intervals should be used 
cautiously when sample sizes are small because there are not enough data to 
accurately determine the necessary corrections for bias and skewness. 



16_Moore_13387_Ch16_01-57.indd   34 06/10/16   9:54 PM

 16-34 Chapter 16 Bootstrap Methods and Permutation Tests 

EXAMPLE 16.9 

GPA 

The BCa confidence interval for the ratio of variances.  In Example 16.6 
(page 16-17), we compared the GPA means of men and women using a 95% 
bootstrap t  confidence interval. Because 0 was contained in the interval, we 
concluded that there was not enough evidence to state that the two means 
were different. Suppose we also want to compare the variances. Figure 16.10 
(page 16-17) suggests that the spread among the male GPAs is larger than 
that of the females. The ratio of the male sample variance to the female 
sample variance is 1.321. Can we conclude there is a difference? 

In Section 12.1 (page 665), we discussed the modified Levene’s test for 
equality of spread. Let’s instead use the bootstrap. Specifically, we’ll form a 
95% confidence interval for s 2 

1ys 2 
2. 

Figure 16.17 shows the bootstrap distribution of the ratio of sample 
variances s2 

1ys2 
2. We see strong skewness in the bootstrap distribution and, 

therefore, in the sampling distribution. This is not unexpected. Recall that 
if the data are Normal and the variances are equal, we’d expect this ratio to 
follow an F distribution. 

The bootstrap t and percentile intervals aren’t reliable when the sampling 
distribution of the statistic is skewed. Figure 16.18 shows software output 
that includes the percentile and BCa intervals. The bootstrap t interval 
is closely related to the Normal interval that is also supplied. The basic 
confidence interval is another method based on the percentiles of the 
bootstrap distribution that we will not discuss here. 

The BCa interval is 

(1.321 2 0.456, 1.321 1 0.914) 5 (0.865, 2.235) 

and the percentile interval is 

(1.321 2 0.468, 1.321 1 0.880) 5 (0.853, 2.201) 

In this case, the percentile and BCa intervals are similar, but the BCa is 
shifted slightly as it has adjusted for the bias, which was estimated at 0.054. 
Both intervals are strongly asymmetrical: the upper endpoint is about twice 
as far from the sample ratio as the lower endpoint. This reflects the strong 
right-skewness of the bootstrap distribution. 

  
 

  
 

3.02.52.01.51.00.5 
Ratio of variances (male to female) 

of resamples 

FigurE 16.17 The bootstrap distribution of the ratio 
of sample variances of 5000 resamples from the data in 
Example 16.6. The bootstrap distribution is right-skewed, 
so we conclude that the sampling distribution of the ratio 
of sample variances is right-skewed, Example 16.9. 

   
  

  
  

 

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 5000 bootstrap replicates 

CALL : 
boot.ci(boot.out = gpa2.boot) 

Intervals : 
Level Normal Basic 
95% (0.608, 1.926) (0.441, 1.788) 

Level Percentile BCa 
95% (0.853, 2.201) (0.865, 2.235) 
Calculations and Intervals on Original Scale 

FigurE 16.18 R output for bootstrapping the ratio of 
variances for the GPA data, Example 16.9. 
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The output in Figure 16.18 also shows that both endpoints of the less-
accurate intervals (bootstrap t  via the Normal interval and the percentile 
interval) are too low. These intervals miss the population ratio on the low side 
too often (more than 2.5% of the time) and miss on the high side too seldom. 
They give a biased picture of where the true ratio is likely to be. 

confidence intervals for the correlation 
The bootstrap allows us to find confidence intervals for a wide variety of sta­
tistics. So far, we have looked at the sample mean, trimmed mean, the differ­
ence between two means, and the ratio of sample variances using a variety of 
different bootstrap confidence intervals. The choice of interval depended on 
the shape of the bootstrap distribution and the desired accuracy. 

Now we will bootstrap the correlation coefficient. This is our first use of 
the bootstrap for a statistic that depends on two related variables. As with 
the difference between two means, we must pay attention to how we should 
resample. 

EXAMPLE 16.10 

LAUND24 

Correlation between price and rating.  Consumers Union provides ratings on 
a large variety of consumer products. They use sophisticated testing meth­
ods as well as surveys of their members to create these ratings. The ratings 
are published in their magazine, Consumer Reports. 

An article in Consumer Reports rated laundry detergents on a scale from
1 to 100. Here are the ratings along with the price per load, in cents, for 
24 laundry detergents: 

Price Price Price Price 
Rating (cents) Rating (cents) Rating (cents) Rating (cents)

61 17 59 22 56 22 55 16 

55 30 52 23 51 11 50 15 

50  9 48 16 48 15 48 18 

46 13 46 13 45 17 36  8 

35  8 34 12 33 7 32  6 

32  5 29 14 26 11 26 13 

In Example 2.8 (page 85), we examined the relationship between rating 
and price per load for 53 laundry detergents. Based on that study, we expect 
that the higher-priced detergents will tend to have higher ratings. The 
scatterplot in Figure 16.19 shows that the higher-priced products do tend 
to have better ratings, but the relationship is not particularly strong. The 
correlation is 0.671. Let’s use the bootstrap to find a 95% confidence interval 
for the population correlation. 

Our confidence interval will also provide a test of the null hypothesis that the  
population correlation is zero. If the 95% confidence interval does not include  
zero, we can reject the null hypothesis in favor of the two-sided alternative. Al­
though we would expect the correlation to be positive, we could be surprised and  
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FigurE 16.19 Scatterplot of 
price per load (in cents) versus 
rating for 24 laundry detergents, 
Example 16.10. 

20 
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find that it is negative. It is important to keep in mind that we cannot use what  
we learned by looking at the scatterplot to formulate our alternative hypothesis. 

How shall we resample from the laundry detergent data? Because each  
observation consists of the price and the rating for one product, we resample  
products. Resampling prices and ratings separately would lose the connection  
between a product’s price and its rating. Software such as R automates proper  
resampling. Once we have produced a bootstrap distribution by resampling, we  
can examine the distribution and construct a confidence interval in the usual  
way. We need no special formulas or procedures to handle the correlation. 

Figure 16.20 shows the bootstrap distribution and Normal quantile plot 
for the sample correlation for 5000 resamples from the 24 laundry detergents 
in our sample. The bootstrap distribution is skewed to the left with relatively 
small bias. We’ll need to check whether a 95% bootstrap t confidence interval 
is reasonable here. 
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FigurE 16.20. The bootstrap distribution and Normal quantile plot for the correlation r 
for 5000 resamples from the laundry detergent data set. 
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The bootstrap standard error is SEboot  5 0.086. The t interval using the 
bootstrap standard error is 

r 6 t*SEboot 5 0.671 6 (2.074)(0.086) 

5 0.671 6 0.178 

5 (0.493, 0.849) 

The 95% bootstrap percentile interval is 

(2.5 percentile, 97.5 percentile) 5 (0.485, 0.827) 

5 (0.671 2 0.186, 0.671 1 0.156) 

The two confidence intervals are not too different. If you feel this discrepancy 
is acceptable, you might want to use the percentile interval to account for the 
skewness in the bootstrap distribution. 

While the confidence intervals give a wide range for the population 
correlation, both of them include only positive values. Thus, these data 
provide significant evidence that there is a positive relationship between a 
laundry detergent’s rating and its price per load. 

SEcTion 16.4  SUMMARy 
●  Both bootstrap t and (when they exist) traditional z and t confidence  
intervals require statistics with small bias and sampling distributions close 
to Normal. We can check these conditions by examining the bootstrap  
distribution for bias and lack of Normality. 

●  The bootstrap percentile confidence interval for 95% confidence is the 
interval from the 2.5 percentile to the 97.5 percentile of the bootstrap  
distribution. Agreement between the bootstrap t and percentile intervals is 
an added check on the conditions needed by the t interval. Do not use t or 
percentile intervals if these conditions are not met. 

●  When bias or skewness is present in the bootstrap distribution, use a BCa   
interval. The t and percentile intervals are inaccurate under these circum­
stances unless the sample sizes are very large. The BCa confidence intervals ad­
just for bias and skewness and are generally accurate except for small samples. 

SEcTion 16.4  EXERCISES 
For Exercises 16.36 and 16.37, see page 16-32.	 

16.38  Find the 95% bootstrap percentile confidence 
interval. The mean of a sample is x 5 226.0 and the 
standard deviation is s  5 75.6. The mean of the bootstrap 
distribution is x 5 226.2 and the standard deviation 
is s  5 11.8. A bootstrap distribution has the following 
percentiles: 

Percentile 

0.01 0.025 0.05 0.10 0.50 0.90 0.95 0.975 0.99 

199.07 203.55 207.38 210.97 225.90 241.63 245.93 248.68 252.28 

Find the 95% bootstrap percentile confidence interval. 

16.39  Summarize the output. Figures 16.21 and 16.22 
show software output from R with information about a
bootstrap analysis. Summarize the information in the
output. Be sure to include the BCa confidence interval.

16.40  Confidence interval for the average IQ score.  
The distribution of the 60 IQ test scores in Table 1.1 
(page 14) is roughly Normal, and the sample size is large 
enough that we expect a Normal sampling distribution. 
We will compare confidence intervals for the population 
mean IQ m based on this sample. IQ

(a) Use the formula syÏn to find the standard error of the 
mean. Give the 95% t confidence interval based on this 
standard error. 
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FigurE 16.21 R graphical 0.5 1.0 1.5 2.0 2.5 –3 –2 –1 0 1 2 3 
output, Exercise 16.39. t* Normal score 

  

  

 

ORDINARY NONPARAMETRIC BOOTSTRAP 

Call : 
boot(data = bc, statistic = theta, R = 5000) 

Bootstrap Statistics : 
original bias std. error 

t1* 1.20713 0.04544967 0.2336016 

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 5000 bootstrap replicates 

CALL : 
boot.ci(boot.out = corr1.boot) 

Intervals : 
Level Normal Basic 
95% (0.704, 1.620) (0.653, 1.554) 

Level Percentile BCa 
95% (0.860, 1.762) (0.766, 1.671) 

FigurE 16.22 Output from R with bootstrap confidence 
intervals, Exercise 16.39. 
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(b) Bootstrap the mean of the IQ scores. Make a 
histogram and a Normal quantile plot of the bootstrap 
distribution. Does the bootstrap distribution appear 
Normal? What is the bootstrap standard error? Give the 
95% bootstrap t confidence interval. 

(c) Give the 95% confidence percentile and BCa intervals. 
Make a graphical comparison by drawing a vertical  
line at the original sample mean x and displaying the 
three intervals vertically, one above the other. How 
well do your four confidence intervals agree? Was 
bootstrapping needed to find a reasonable confidence 
interval, or was the formula-based confidence interval 
good enough? 

16.41  Confidence interval for a Normal data set. In  
Exercise 16.29 (page 16-23), you bootstrapped the mean  
of a simulated SRS from the standard Normal distribution  
N(0, 1) and found the 95% standard t and bootstrap t  
confidence intervals for the mean. NORMALD 

(a) Find the 95% bootstrap percentile confidence  
interval. Does this interval confirm that the t intervals  
are acceptable? 

(b) We know that the population mean is 0. Do the 
confidence intervals capture this mean? 

16.42  Using bootstrapping to check traditional 
methods. Bootstrapping is a good way to check if
traditional inference methods are accurate for a given 
sample. Consider the following data: DATA30 

98 107 113 104  94 100 107  98 112  97 
99  95  97  90 109 102  89 101  93  95 
95  87  91 101 119 116  91  95  95 104 
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(a) Examine the data graphically. Do they appear to 
violate any of the conditions needed to use the one-
sample t confidence interval for the population mean? 

(b) Calculate the 95% one-sample t confidence interval 
for this sample. 

(c) Bootstrap the data, and inspect the bootstrap 
distribution of the mean. Does it suggest that a t interval 
should be reasonably accurate? Calculate the bootstrap t  
95% interval. 

(d) Find the 95% bootstrap percentile interval. Does it 
agree with the two t intervals? What do you conclude 
about the accuracy of the one-sample t interval here? 

16.43  Comparing bootstrap confidence intervals. The  
graphs in Figure 16.9 (page 16-15) do not appear to show  
any important skewness in the bootstrap distribution of the  
trimmed mean for Example 16.4. Compare the bootstrap  
percentile and bootstrap t intervals for the trimmed mean,  
given in the discussion of Example 16.8 (page 16-32). Does  
the comparison suggest any skewness? GPA 

16.44  More on using bootstrapping to check 
traditional methods. Continue to work with the data 
given in Exercise 16.42. DATA30 

(a) Find the 95% BCa confidence interval. 

(b) Does your opinion of the robustness of the one-
sample t confidence interval change when comparing it 
with the BCa interval? 

(c) To check the accuracy of the one-sample t confidence 
interval, would you generally use the bootstrap percentile 
or the BCa interval? Explain. 

16.45  BCa interval for the correlation coefficient.  
Find the 95% BCa confidence interval for the correlation 
between price and rating, from the data in Example 16.10 
(page 16-35). Is this more accurate interval in general 
agreement with the 95% bootstrap t and percentile 
intervals? Do you still agree with the judgment in the 
discussion of Example 16.10 that the simpler intervals 
are adequate? LAUND24 

16.46  Bootstrap confidence intervals for the average 
audio file length. In Exercise 16.17 (page 16-16), you 
found a bootstrap t confidence interval for the population 
mean m. Careful examination of the bootstrap 
distribution reveals a slight skewness in the right tail. Is 
this something to be concerned about? Bootstrap the 
mean and give all three 95% bootstrap confidence 
intervals: t, percentile, and BCa. Make a graphical 
comparison by displaying the three intervals vertically, 
one above the other. Discuss what you see. SONGS 

16.47  Bootstrap confidence intervals for service center  
call lengths. The distribution of the call center lengths that  
you used in Exercise 16.25 (page 16-22) is strongly skewed.  

In that exercise, you found a bootstrap t confidence  
interval for the population mean m, even though some  
skewness remains in the bootstrap distribution. Bootstrap  
the mean length and give all three bootstrap 95%  
confidence intervals: t, percentile, and BCa. Make a  
graphical comparison by drawing a vertical line at the  
original sample mean x and displaying the three intervals  
horizontally, one above the other. Discuss what you see: Do  
bootstrap t and percentile agree? Does the more accurate  
interval agree with the two simpler methods? CALLS80 

16.48  Bootstrap confidence intervals for the standard  
deviation. We would like a 95% confidence interval for   
the standard deviation s of 150 GPAs. In Exercise 16.27  
(page 16-23), we considered the bootstrap t interval. Now  
we have a more accurate method. Bootstrap s and report all  
three 95% bootstrap confidence intervals: t, percentile, and  
BCa. Make a graphical comparison by drawing a vertical  
line at the original s and displaying the three intervals  
vertically, one above the other. Discuss what you see: Do  
bootstrap t and percentile agree? Does the more accurate  
interval agree with the two simpler methods? What interval  
would you use in a report on GPAs at this college? GPA 

16.49  The effect of decreasing the sample size.  
Exercise 16.15 (page 16-12) gives an SRS of 10 of the  

service center call lengths from Table 1.2. Describe the  
bootstrap distribution of x from this sample. Give a 95%  
confidence interval for the population mean m based on  
these data and a method of your choice. Describe carefully  
how your result differs from the intervals in Exercise 16.47,  
which use the larger sample of 80 call lengths. CALLS10 

16.50  Bootstrap confidence interval for the GPA 
data. The GPA data for females from Example 16.6 

(page 16-17) are strongly skewed to the left and have a 
cluster of observations at 4. GPA 

(a) Bootstrap the mean of the data. Based on the bootstrap  
distribution, which bootstrap confidence intervals would  
you consider for use? Explain your answer. 

(b) Find all three bootstrap confidence intervals. How do 
the intervals compare? Briefly explain the reasons for any 
differences. In particular, what kind of errors would you 
make in estimating the mean GPA by using a t interval or 
a percentile interval instead of a BCa interval? 

16.51  Bootstrap confidence intervals for the 
difference in GPAs. Example 16.6 (page 16-17) considers 
the difference in mean GPAs of men and women. The 
bootstrap distribution appeared reasonably Normal. Give 
the 95% BCa confidence interval for the difference in 
mean GPAs. Is this interval comparable to the bootstrap t  
interval calculated in the example? GPA 

16.52  The correlation between GPA and high school 
math grades. The study described in Example 16.4 
(page 16-13) used high school grades to predict GPA. For 
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this exercise, we will look at the correlation between GPA 
and high school math grades. GPA 

(a) Describe the distribution of GPAs. Do the same for 
high school math grades. 

(b) Describe the relationship between GPA and high 
school math grades. 

(c) Generate 2000 resamples and use these to obtain the 
bootstrap distribution for the correlation. 

(d) Describe the shape and bias of the bootstrap  
distribution. Does use of the simpler bootstrap confidence  
intervals (t and percentile) appear to be justified? 

(e) Find all three 95% bootstrap confidence intervals: t, 
percentile, and BCa. Make a graphical comparison by 
drawing a vertical line at the original correlation r and 
displaying the three intervals vertically, one above the 
other. Discuss what you see. Does it still appear that the 
simpler intervals are justified? What confidence interval 
would you include in a report describing the relationship 
between GPA and high school math grades? 

16.53  The correlation between education spending 
and population. Figure 2.5 (page 90) shows a strong 
positive relationship between education spending and 
population in 2015 for 50 states. Use the bootstrap to 
perform statistical inference for these data. EDSPEND 

(a) Describe the shape and bias of the bootstrap 
distribution. Do you think that a simple bootstrap 
inference (t and percentile confidence intervals) is 
justified? Explain your answer. 

(b) Give the 95% BCa and bootstrap percentile 
confidence intervals for the population correlation. 
Do they (as expected) agree closely? Do these intervals 
provide significant evidence at the 5% level that the 
population correlation is not 0? 

16.54  Bootstrap distribution for the slope b1.  
Describe carefully how to resample from data on an 

explanatory variable x and a response variable y to create 
a bootstrap distribution for the slope b1 of the least-
squares regression line. 

16.55  Predicting ratings of laundry detergents. Refer 
to Example 16.10 (page 16-35). LAUND24 

(a) Find the least-squares regression line for predicting 
rating from price. 

(b) Bootstrap the regression line and give a 95% confidence 
interval for the slope of the population regression line. 

(c) Compare the bootstrap results with the usual method 
for finding a confidence interval for a regression slope. 

16.56  Predicting GPA. Continue your study of GPA  
and high school math grades, begun in Exercise 16.52,  

by performing a regression to predict GPA using high  
school math grades as the explanatory variable. GPA 

(a) Plot the residuals against the math grades and make 
a Normal quantile plot of the residuals. Do these plots 
suggest that inference based on the usual simple linear 
regression model may be inaccurate? Give reasons for 
your answer. 

(b) Examine the bootstrap distribution of the slope b1 of 
the least-squares regression line. Based on what you see, 
what do you recommend regarding the use of bootstrap 
t or bootstrap percentile intervals? Give reasons for your 
recommendation. 

(c) Give the 95% BCa confidence interval for the slope b1  
of the population regression line. Compare this with the  
standard 95% confidence interval based on Normality, the  
bootstrap t interval, and the bootstrap percentile interval.  
Using the BCa interval as a standard, which of the other  
intervals are adequately accurate for practical use? 

16.57  Predicting education spending. Continue 
your study of the relationship between education 

spending and population, begun in Exercise 16.53. Run 
the regression to predict education spending using 
population as the explanatory variable. EDSPEND 

(a) Plot the residuals against the explanatory variable 
and make a Normal quantile plot of the residuals. Do the 
residuals appear to be Normal? Explain your answer. 

(b) Examine the shape and bias of the bootstrap 
distribution of the slope b1 of the least-squares line. Does 
this distribution suggest that even the bootstrap t interval 
will be accurate? Give a reason for your answer. 

(c) Find the standard 95% t confidence interval for b1  
and also the BCa, bootstrap t, and bootstrap percentile 
confidence intervals. What do you conclude about the 
accuracy of the two t intervals? 

16.58  The effect of outliers. We know that outliers can 
strongly influence statistics such as the mean and the 
least-squares line. A study of dementia patients in 
nursing homes recorded various types of disruptive 
behaviors every day for 12 weeks. Days were classified as 
moon days if they were in a three-day period centered at 
the day of a full moon. A matched pairs analysis was 
performed to see if the average number of disruptive 
behaviors was different on moon days. There were three 
patients with very small differences that may be 
considered outliers. MOON 

(a) Bootstrap the mean of the differences with and  
without the three low values. How do these values  
influence the shape and bias of the bootstrap distribution? 

(b) Give the BCa confidence interval from both bootstrap 
distributions. Discuss the differences. 
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16 . 5  significance Testing using permutation Tests
 

When you complete 
this section, you will 
be able to: 

●  Describe the steps of a permutation test for comparing two populations. 
●  Outline the steps needed for a permutation test for a matched 

pairs study. 
●  Using software, perform a permutation test for comparing two 

populations. 
●  Describe the randomization needed for a permutation test for the 

relationship between two quantitative variables. 

LOOK BACK 

tests of  
significance, 

p. 361 

LOOK BACK 

Significance tests tell us whether an observed effect, such as a difference 
between two means or a correlation between two variables, could reasonably 
occur “just by chance’’ in selecting a random sample. If not, we have evidence 
that the effect observed in the sample reflects an effect that is present in the 
population. The reasoning of tests goes like this: 

1.  Choose a statistic that measures the effect you are looking for. 

2.  Construct the sampling distribution that this statistic would have if the  
effect were not present in the population. 

3.  Locate the observed statistic on this distribution. A value in the main body 
of the distribution could easily occur just by chance. A value in the tail 
would rarely occur by chance and so is evidence that something other than 
chance is operating. 

null hypothesis,  
p. 363 

P-value,  
p. 366 

The statement that the effect we seek is not present in the population is  
the null hypothesis, H0. Assuming the null hypothesis is true, the probability  
that we would observe a statistic value as extreme or more extreme than  
the one we did observe is the P-value. Figure 16.23 illustrates the idea of a   
P-value. Small P-values are evidence against the null hypothesis and in  
favor of a real effect in the population. Tests based on resampling don’t  
change this approach. They find P-values by resampling calculations rather  
than from formulas and so can be used in settings where traditional tests  
don’t apply. 

  
 

 
 
 

 
 

FigurE 16.23 The P-value 
of a statistical test is found from 
the sampling distribution the 
statistic would have if the null 
hypothesis were true. It is the 
probability of a result at least as 
extreme as the value we actually 
observed. 

Sampling 
distribution 

when H0 is true 
P-value 

Observed statistic 



16_Moore_13387_Ch16_01-57.indd   42 06/10/16   9:54 PM

 16-42 Chapter 16 Bootstrap Methods and Permutation Tests 

Because P-values are calculated acting as if the null hypothesis were true we  
cannot resample from the observed sample as we did earlier. In the absence  
of bias, resampling from the original sample creates a bootstrap distribution  
centered at the observed value of the statistic. If the null hypothesis is, in fact, not  
true, this value may be far from the parameter value stated by the null hypothesis.  
We must estimate what the sampling distribution of the statistic would be if the  
null hypothesis were true. That is, we must obey the following rule: 

resAmpLIng FOr sIgnIFICAnCe TesTs 

To estimate the P-value for a test of significance, estimate the sampling 
distribution of the test statistic when the null hypothesis is true by resam­
pling in a manner that is consistent with the null hypothesis. 

EXAMPLE 16.11 

DRP 

“directed reading activities.’’  Do new “directed reading activities’’ improve 
the reading ability of elementary school students, as measured by their 
Degree of Reading Power (DRP) scores? A study assigns students at random 
to either the new method (treatment group, 21 students) or traditional 
teaching methods (control group, 23 students). The DRP scores at the end 
of the study appear in Table 16.1.7 In Example 7.13 (page 440), we applied 
the two-sample t test to these data. 

To apply resampling, we will start with the difference between the sam­
ple means as a measure of the effect of the new activities: 

statistic 5 xtreatment 2 xcontrol 

The null hypothesis H0 for the resampling test is that the teaching method 
has no effect on the distribution of DRP scores. If H0 is true, the DRP scores 
in Table 16.1 do not depend on the teaching method. Each student has a 
DRP score that describes that child and is the same no matter which group 
the child is assigned to. The observed difference in group means just reflects 
the accident of random assignment to the two groups. 

Now we can see how to resample in a way that is consistent with 
the null hypothesis: imitate many repetitions of the random assignment 
of students to treatment and control groups, with each student always 
keeping his or her DRP score unchanged. Because resampling in this way 
scrambles the assignment of students to groups, tests based on resampling 
are called permutation tests, from the mathematical name for scrambling 
a collection of things. 

permutation test 

TABLe 16.1 degree of reading power scores for Third-graders 

Treatment group Control group 

24 61 59 46 42 33 46 37 
43 44 52 43 43 41 10 42 
58 67 62 57 55 19 17 55 
71 49 54 26 54 60 28 
43 53 57 62 20 53 48 
49 56 33 37 85 42 



  

      

  
 

 

24, 61 | 42, 33, 46, 37 
x1 – x2 = 42.5 –  39.5 =  3.0 

33, 61 | 24, 42, 46, 37 
x1 – x2 = 47 –  37.25 =  9.75 

37, 42 | 24, 61, 33, 46 
x1 – x2 = 39.5 –  41 =  –1.5 

33, 46 | 24, 61, 42, 37 
x1 – x2 = 39.5 –  41 =  –1.5 

FigurE 16.24 The idea of permutation resampling. The top box shows the outcome of 
a study with four subjects in one group and two in the other. The boxes below show three 
permutation resamples. The values of the statistic for many such resamples form the 
permutation distribution. 
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Here is an outline of the permutation test procedure for comparing the 
mean DRP scores in Example 16.11: 

permutation resample 

permutation distribution 

●  Choose 21 of the 44 students at random to be the treatment group; the 
other 23 are the control group. This is an ordinary SRS, chosen without 
replacement. It is called a permutation resample. 

●  Calculate the mean DRP score in each group, using the students’ DRP 
scores in Table 16.1. The difference between these means is our statistic. 

●  Repeat this resampling and calculation of the statistic hundreds of times. 
The distribution of the statistic from these resamples estimates the sampling 
distribution under the condition that H0 is true. It is called a permutation 
distribution. 

●  Consider the value of the statistic actually observed in the study, 

xtreatment 2 xcontrol 5 51.476 2 41.522 5 9.954 

Locate this value on the permutation distribution to get the P-value. 

Figure 16.24 illustrates permutation resampling on a small scale. The top  
box shows the results of a study with four subjects in the treatment group and  
two subjects in the control group. A permutation resample chooses an SRS of  
four of the six subjects to form the treatment group. The remaining two are the  
control group. The results of three permutation resamples appear below the  
original results, along with the statistic (difference in group means) for each. 

EXAMPLE 16.12 

DRP 

permutation test for the drp  study. Figure 16.25 shows the permutation
distribution of the difference in means based on 1000 permutation  
resamples from the DRP data in Table 16.1. This is a resampling estimate of 
the sampling distribution of the statistic when the null hypothesis H0 is true. 
As H0 suggests, the distribution is centered at 0 (no effect). The solid vertical 
line in the figure marks the location of the statistic for the original sample, 
9.954. Use the permutation distribution exactly as if it were the sampling 
distribution: the P-value is the probability that the statistic takes a value at 
least as extreme as 9.954 in the direction given by the alternative hypothesis. 

We seek evidence that the treatment increases DRP scores, so the 
alternative hypothesis is that the distribution of the statistic xtreatment 2 xcontrol  
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FigurE 16.25 The 
permutation distribution of the 
difference between the treatment 
mean and the control mean 
based on the DRP scores of 44 
students, Example 16.12. The 
dashed line marks the mean of 
the permutation distribution: it 
is very close to zero, the value 
specified by the null hypothesis. 
The solid vertical line marks the 
observed difference in means, 
9.954. Its location in the right tail 
shows that a value this large is 
unlikely to occur when the null 
hypothesis is true. 

Observed
 
Mean
 

P-value 

–15 –10 –5 0 5 10 15 

is centered not at 0 but at some positive value. Large values of the statistic 
are evidence against the null hypothesis in favor of this one-sided alternative. 
The permutation test P-value is the proportion of the 1000 resamples that 
give a result at least as great as 9.954. A look at the resampling results 
finds that 14 of the 1000 resamples gave a value of 9.954 or larger, so the 
estimated P-value is 14/1000, or 0.014. 

Figure 16.25 shows that the permutation distribution has a roughly Normal 
shape. Because the permutation distribution approximates the sampling 
distribution, we now know that the sampling distribution is close to Normal. 
When the sampling distribution is close to Normal, we can safely apply the 
usual two-sample t test. The JMP output in Figure 7.13 (page 441) gives  
P  5 0.013, very close to the P-value from the permutation test. 

using software 
In principle, you can program almost any statistical software to do a permu­
tation test. It is more convenient to use software that automates the process  
of resampling, calculating the statistic, forming the permutation distribution,  
and finding the P-value. The package perm in R contains functions that allow  
you to request permutation tests. The permutation distribution in Figure 16.25  
is one output. Another is this summary of the test results: 

Exact Permutation Test Estimated by Monte Carlo 

data:  trtgrp and ctrlgrp 
p-value = 0.0154 
 alternative hypothesis:  true mean trtgrp − mean ctrlgrp is greater than 0 sample 
estimates: 
mean trtgrp − mean ctrlgrp 

9.954451 

 p-value estimated from 5000 Monte Carlo replications 
 
99 percent confidence interval on p-value:
 
 0.01110640 0.02024333
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By giving “greater’’ as the alternative hypothesis, the output makes it clear that  
0.015 is the one-sided P-value. This estimate of the P-value is more precise than  
the 0.014 estimate because it is based on 5000 rather than 1000 resamples. 

Permutation tests in practice 

LOOK BACK	 

two-sample  
t test, 
 

page 440 

Permutation tests versus t tests We have analyzed the data in Table 16.1 
both by the two-sample t test (in Chapter 7) and by a permutation test. Com­
paring the two approaches brings out some general points about permutation 
tests versus traditional formula-based tests. 

●
  The hypotheses for the t test are stated in terms of the two population 
means, 

H0: mtreatment  2  mcontrol  5 0 

Ha: mtreatment  2  mcontrol  . 0 

The permutation test hypotheses are more general. The null hypothesis is 
“same distribution of scores in both groups,’’ and the one-sided alternative 
is “scores in the treatment group are systematically higher.’’ These more 
general hypotheses imply the t hypotheses if we are interested in mean 
scores and the two distributions have the same shape. 

●  The plug-in principle says that the difference in sample means estimates 
the difference in population means. The t statistic starts with this difference. 
We used the same statistic in the permutation test, but that was a choice: we 
could use the difference in 25% trimmed means or any other statistic that 
measures the effect of treatment versus control. 

●  The t test statistic is based on standardizing the difference in means in 
a clever way to get a statistic that has a t distribution when H0 is true. The 
permutation test works directly with the difference in means (or some 
other statistic) and estimates the sampling distribution by resampling. No 
formulas are needed. 

●  The t test gives accurate P-values if the sampling distribution of the  
difference in means is at least roughly Normal. The permutation test gives  
accurate P-values even when the sampling distribution is not close to Normal. 

The permutation test is useful even if we plan to use the two-sample t test. 
Rather than relying on Normal quantile plots of the two samples and the 
central limit theorem, we can directly check the Normality of the sampling 
distribution by looking at the permutation distribution. Permutation tests 
provide a “gold standard’’ for assessing two-sample t tests. If the two P-values 
differ considerably, it usually indicates that the conditions for the two-sample 
t don’t hold for these data. Because permutation tests give accurate P-values 
even when the sampling distribution is skewed, they are often used when 
accuracy is very important. Here is an example. 

EXAMPLE 16.13	 permutation test for gpAs.  In Example 16.6 (page 16-17), we looked at  
the difference in mean GPAs of male and female students. Figure 16.10  
(page  16-17) shows both distributions. Because the distributions are  
skewed and the sample sizes are somewhat different, a two-sample t test  
might be inaccurate.

GPA 
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Based on the summary statistics, 

Sex	 n x s 

Male 91   2.784 0.859 

Female 59   2.933 0.748 

Difference 20.149 

the t statistic is 21.12 with either 58 or 135.73 degrees of freedom. The P-
value is roughly 0.26 in either case. 

We perform permutation tests with 5000 resamples using R. We use the 
difference in means, x1 2 x2, as our test statistic. This is done by randomly 
regrouping the total set of GPAs into two groups that are the same sizes as 
the two original samples. This is consistent with the null hypothesis that sex 
has no effect on GPA. Each GPA appears once in the data of each resample, 
but some GPAs move from the male to the female group, and vice versa. 
We calculate the test statistic for each resample and create its permutation 
distribution. The P-value is the proportion of the resamples with statistics 
that exceed the observed statistic. 

A 99% confidence interval for the P-value based on the 5000 resamples is 
0.256, 0.309). This interval contains the P-value for the t test. The skewness 
nd differing sample sizes do not have an impact here primarily because the 
ample sizes are relatively large. 

(
a
s

If you read Chapter 15 on nonparametric tests, you will find more 
comparisons of permutation tests with rank tests as well as tests based on 
Normal distributions. 

Data from an entire population  A subtle difference between confidence  
intervals and significance tests is that confidence intervals require the  
distinction between sample and population, but tests do not. If we have data  
on an entire population—say, all employees of a large corporation—we don’t  
need a confidence interval to estimate the difference between the mean  
salaries of male and female employees. We can calculate the means for all  
men and for all women and get an exact answer. But it still makes sense to  
ask, “Is the difference in means so large that it would rarely occur just by  
chance?’’ A test and its P-value answer that question. 

Permutation tests are a convenient way to answer such questions. In  
carrying out the test, we pay no attention to whether the data are a sample  
or an entire population. The resampling assigns the full set of observed sal­
aries at random to men and women and builds a permutation distribution  
from repeated random assignments. We can then see if the observed dif­
ference in mean salaries is so large that it would rarely occur if sex did not  
matter. 

LOOK BACK	 

two-sample  
t test,  
p. 440 

When are permutation tests valid?  The two-sample t test starts from the 
condition that the sampling distribution of x1 2 x2 is Normal. This is the case 
if both populations have Normal distributions, and it is approximately true for
large samples from non-Normal populations because of the central limit theo­
rem. The central limit theorem helps explain the robustness of the two-sample 
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t test. The test works well when both populations are symmetric, especially 
when the two sample sizes are similar. 

LOOK BACK 

robustness of 
two-sample 
procedures,  

p. 442 

The permutation test completely removes the Normality condition. However,  
resampling in a way that moves observations between the two groups requires that  
the two populations are identical when the null hypothesis is true—that not only  
their means are the same but also their spreads and shapes. Our preferred version  
of the two-sample t  test allows different standard deviations in the two groups,  
so the shapes are both Normal but need not have the same spread. 

In Example 16.13, the distributions are skewed but we do not rule out 
the t test because of the central limit theorem. The permutation test is valid 
if the GPA distributions for males and females have the same shape, so that 
they are identical under the null hypothesis that the centers (the means) are 
the same. Based on Figure 16.10 (page 16-17), it appears that the distribution 
for the males has a little more spread than the distribution for the females. 
Fortunately, the permutation test is robust. That is, it gives accurate P-values 
when the two population distributions have somewhat different shapes, such 
as when they have slightly different standard deviations. 

Sources of variation  Just as in the case of bootstrap confidence intervals, 
permutation tests are subject to two sources of random variability: the origi­
nal sample is chosen at random from the population, and the resamples are 
chosen at random from the sample. Again, as in the case of the bootstrap, the 
added variation due to resampling is usually small and can be made as small 
as we like by increasing the number of resamples. 

The number of resamples on which a permutation test is based determines 
the number of decimal places and precision in the resulting P-value. Tests 
based on 1000 resamples give P-values to three places (multiples of 0.001), 
with a margin of error of 2ÏP(1 2 P)y1000 equal to 0.014 when the true 
one-sided P-value is 0.05. If higher precision is needed or your computer is 
sufficiently fast, you may choose to use 10,000 or more resamples. 

uSE Your KnoWLEdgE 16.59  Is a permutation test valid?  Suppose a professor wants to compare 
the effectiveness of two different instruction methods. By design, 
one method is more team oriented, so he expects the variability in 
individual tests scores for this method to be smaller. Is it valid to use 
a permutation test to compare the mean scores of the two methods? 
Explain. 

16.60	  Declaring significance.  Suppose that a one-sided permutation test 
based on 250 permutation resamples resulted in a P-value of 0.044. 
What is the approximate standard deviation of the distribution? 
Would you feel comfortable declaring the results significant at the 
5% level? Explain. 

Permutation tests in other settings 
The bootstrap procedure can replace many different formula-based confi­
dence intervals, provided that we resample in a way that matches the setting. 
Permutation testing is also a general method that we can adapt to various 
settings. 
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generAL prOCedure FOr permuT ATIOn TesTs 

To carry out a permutation test based on a statistic that measures the size 
of an effect of interest: 

1.  Compute the statistic for the original data. 

2.  Choose permutation resamples from the data without replacement 

in a way that is consistent with the null hypothesis of the test and 

with the study design. Construct the permutation distribution of the 

statistic from its values in a large number of resamples.
 

3.  Find the P-value by locating the original statistic on the permutation 

distribution.
 

Permutation test for matched pairs  The key step in the general procedure 
for permutation tests is to form permutation resamples in a way that is 
consistent with the study design and with the null hypothesis. Our examples 
to this point have concerned two-sample settings. How must we modify our 
procedure for a matched pairs design? 

EXAMPLE 16.14 permutation test for full-moon study.  Can the full moon influence be­
havior? A study observed 15 nursing-home patients with dementia. The  
number of incidents of aggressive behavior was recorded each day for  
12 weeks. Call a day a “moon day’’ if it is the day of a full moon or the day  
before or after a full moon. Table 16.2 gives the average number of aggres­
sive incidents for moon days and other days for each subject.8 These are  
matched pairs data. A matched pairs t test found evidence that the mean  
number of aggressive incidents is higher on moon days (t  5  6.45, df 5  14,  
P  , 0.001). The data show some signs of non-Normality. We want to apply  
a permutation test. 

The null hypothesis says that the full moon has no effect on behavior. 
If this is true, the two entries for each patient in Table 16.2 are two 
measurements of aggressive behavior made under the same conditions. 
There is no distinction between “moon days’’ and “other days.’’ Resampling 

Patient Moon days Other days

MOON 

TABLe 16.2 Aggressive Behaviors of dementia patients 

Patient Moon days Other days 

1 3.33 0.27 9 6.00 1.59 

2 3.67 0.59 10 4.33 0.60 

3 2.67 0.32 11 3.33 0.65 

4 3.33 0.19 12 0.67 0.69 

5 3.33 1.26 13 1.33 1.26 

6 3.67 0.11 14 0.33 0.23 

7 4.67 0.30 15 2.00 0.38 

8 2.67 0.40 
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in a way consistent with this null hypothesis randomly assigns one of each 
patient’s two scores to “moon’’ and the other to “other.’’ We don’t mix results 
for different subjects, because the original data are paired. 

The permutation test (like the matched pairs t test) uses the difference 
in means xmoon 2 xother. Figure 16.26 shows the permutation distribution 
of this statistic from 10,000 resamples. None of these resamples produces 
a difference as large as the observed difference, xmoon 2 xother 5 2.433. The 
estimated one-sided P-value is less than 1 in 1000. We report this result 
as P  , 0.0001. There is strong evidence that aggressive behavior is more 
common on moon days. 

  
 

 
 
 

FigurE 16.26 The 
permutation distribution for the 
mean difference (moon days 
minus other days) from 10,000 
paired resamples from the data 
in Table 16.2, Example 16.14. 

Observed 
Mean 

–2.5 –2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5 
Difference in means 

The permutation distribution in Figure 16.26 is close to Normal, as a Nor­
mal quantile plot confirms. The matched pairs t test is, therefore, reliable and 
agrees with the permutation test that the P-value is very small. 

Permutation test for the significance of a relationship  Permutation test­
ing can be used to test the significance of a relationship between two vari­
ables. For example, in Example 16.10, we looked at the relationship between 
price and rating of laundry detergents. 

The null hypothesis is that there is no relationship. In that case, prices are 
assigned to detergents for reasons that have nothing to do with rating. We 
can resample in a way consistent with the null hypothesis by permuting the 
observed ratings among the detergents at random. 

Take the correlation as the test statistic. For every resample, calculate 
the correlation between the prices (in their original order) and ratings (in 
the reshuffled order). The P-value is the proportion of the resamples with 
correlation larger than the original correlation. 

When can we use permutation tests?  We can use a permutation test only 
when we can see how to resample in a way that is consistent with the study 
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design and with the null hypothesis. We now know how to do this for the 
following types of problems: 

●  Two-sample problems when the null hypothesis says that the two 
populations are identical. We may wish to compare population means, 
proportions, standard deviations, or other statistics. You may recall from 
Section 7.3 that traditional tests for comparing population standard 
deviations work very poorly. Permutation tests are a much better choice. 

●  Matched pairs designs when the null hypothesis says that there are only 
random differences within pairs. A variety of comparisons is again possible. 

●  Relationships between two quantitative variables when the null 
hypothesis says that the variables are not related. The correlation is the most 
common measure of association, but not the only one. 

These settings share the characteristic that the null hypothesis specifies a 
simple situation such as two identical populations or two unrelated variables. 
We can see how to resample in a way that matches these situations. 
Permutation tests can’t be used for testing hypotheses about a single population, 
comparing populations that differ even under the null hypothesis, or testing 
general relationships. In these settings, we don’t know how to resample in a 
way that matches the null hypothesis. Researchers are developing resampling 
methods for these and other settings, so stay tuned. 

When we can’t do a permutation test, we can often calculate a bootstrap  
confidence interval instead. If the confidence interval fails to include the null   
hypothesis value, then we reject H0 at the corresponding significance  
level. This is not as accurate as doing a permutation test, but a confidence  
interval estimates the size of an effect as well as giving some information  
about its statistical significance. Even when a test is possible, it is often  
helpful to report a confidence interval along with the test result. Confidence  
intervals don’t assume that a null hypothesis is true, so we use bootstrap  
resampling with replacement rather than permutation resampling without  
replacement. 

SEcTion 16.5  SUMMARy 
●  Permutation tests are significance tests based on permutation 
resamples drawn at random from the original data. Permutation resamples 
are drawn without replacement, in contrast to bootstrap samples, which 
are drawn with replacement. 

●  Permutation resamples must be drawn in a way that is consistent with 
the null hypothesis and with the study design. In a two-sample design, the 
null hypothesis says that the two populations are identical. Resampling ran­
domly reassigns observations to the two groups. In a matched pairs design, 
randomly permute the two observations within each pair separately. To test 
the hypothesis of no relationship between two variables, randomly reassign 
values of one of the two variables. 

●  The permutation distribution of a suitable statistic is formed by the 
values of the statistic in a large number of resamples. Find the P-value of 
the test by locating the original value of the statistic on the permutation 
distribution. 
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●  When they can be used, permutation tests have great advantages. They 
do not require specific population shapes such as Normality. They apply to 
a variety of statistics, not just to statistics that have a simple distribution 
under the null hypothesis. They can give very accurate P-values, regardless 
of the shape and size of the population (if enough permutations are used). 

●  It is often useful to give a confidence interval along with a test. To create a 
confidence interval, we no longer assume that the null hypothesis is true, so 
we use bootstrap resampling rather than permutation resampling. 

SEcTion 16.5  EXERCISES 
For Exercises 16.59 and 16.60, see page 16-47. 

16.61  Marketing cell phones. You have two prototypes 
of a new cell phone and designed an experiment to help 
you decide which one to market. Forty students were 
randomly assigned to use one of the two phones for 
two weeks. Their overall satisfaction with the phone is 
recorded on a subjective scale with a range of 1 to 100. 
Outline the steps needed to compare the means for the 
two phones using a permutation test. 

16.62  Marketing cell phones. Refer to the previous 
exercise. Suppose that you had each of the 40 students 
use both phones. Outline the steps needed to compare 
the means for the two phones using a permutation test. 

16.63  Characteristics of cell phones. Refer to 
Exercise 16.61. Before asking the students to provide an 
overall satisfaction rating, they were asked to provide 
ratings for several characteristics of the cell phone. Two 
of these were satisfaction with the screen and satisfaction 
with the keyboard. Outline the steps needed to evaluate 
the relationship between these two variables for the first 
phone using a permutation test. 

16.64  Compare the correlations. Refer to the previous 
exercise. Suppose that you calculate the correlation 
between satisfaction with the screen and satisfaction with 
the keyboard for each phone. Outline the steps needed to 
compare these two correlations using a permutation test. 

16.65  A small-sample permutation test. To illustrate 
the process, let’s perform a permutation test by hand for 
a small random subset of the DRP data (Example 16.11, 
page 16-42). Here are the data: DRP6 

Treatment group 57 61 

Control group 42 62 41 28 

(a) Calculate the difference in means xtreatment 2 xcontrol  
between the two groups. This is the observed value of the 
statistic. 

(b) Resample: Start with the six scores and choose an SRS  
of two scores to form the treatment group for the first  

resample. You can do this by labeling the scores from 1 to  
6 and using consecutive random digits from Table B or by  
rolling a die. Using either method, be sure to skip repeated  
digits. A resample is an ordinary SRS, without replacement.  
The remaining four scores are the control group. What is  
the difference in group means for this resample? 

(c) Repeat part (b) 20 times to get 20 resamples and 
20 values of the statistic. Make a histogram of the 
distribution of these 20 values. This is the permutation 
distribution for your resamples. 

(d) What proportion of the 20 statistic values were equal 
to or greater than the original value in part (a)? You have 
just estimated the one-sided P-value for the original 6 
observations. 

(e) For this small data set, there are only 15 possible 
permutations of the data. As a result, we can 
calculate the exact P-value by counting the number of 
permutations with a statistic value greater than or equal 
to the original value and then dividing by 15. What is the 
exact P-value here? How close was your estimate? 

16.66  Product labels with animals? Participants in a  
study were asked to indicate their attitude toward a  
product on a seven-point scale (from 1 5 dislike very much  
to 7 5 like very much). A bottle of MagicCoat pet shampoo,  
with a picture of a collie on the label, was the product.  
Prior to indicating this preference, subjects were randomly  
assigned to two groups and were asked to do a word find.  
Four of the words were common to both groups, and four  
were either related to the product image or conflicted with  
the image. The group with the words related to the product  
image were considered primed. Let’s use a permutation test  
for the comparison. Here are the data: BRANDPR 

Group Brand attitude 

Primed 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 

Nonprimed 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 

(a) Examine the scores of each group graphically. Is it 
appropriate to use the two-sample t procedures? Explain 
your answer. 
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(b) Perform the two-sample t test to compare the group 
means. Use a two-sided alternative hypothesis and a 
significance level of 5%. 

(c) Perform a permutation test to compare the group 
means. Summarize your results and conclusions. 

(d) Write a short summary comparing your results in 
parts (b) and (c). Which method do you recommend for 
these data? Give reasons for your answer. 

16.67  Timing of food intake. Examples 7.15 and 7.16 
(pages 443 and 444) examine data on an experiment to 
compare weight loss in subjects who were classified as 
early eaters or late eaters, based on the timing of their 
main meal. In Example 7.16, the following data were 
analyzed: EATER 

Group Weight loss (kg) 

Early eater 6.3 15.1 9.4 16.8 10.2
 

Late eater 7.8  0.2 1.5 11.5  4.6
 

(a) State appropriate null and alternative hypotheses for 
these data. 

(b) Report the result of the pooled two-sample t test. 

(c) Perform a permutation test to compare the two means 
and report the results. Compare the P-value for this test 
with the P-value for the t test in part (b). 

(d) Find a BCa confidence interval for the difference  
in means. How is this interval related to your results in 
part (c)? 

16.68  Standard deviation of the estimated P-value.  
The estimated P-value for the DRP study (Example 16.12,  
page 16-43) based on 1000 resamples is P  5 0.015.  
Suppose that we obtained the same P-value based on 4000  
resamples. What is the approximate standard deviation of  
each of these P-values? 

16.69  When is a permutation test valid? You want 
to test the equality of the means of two populations. 

Sketch density curves for two populations for which 

(a) a permutation test is valid but a t test is not. 

(b) both permutation and t tests are valid. 

(c) a t test is valid but a permutation test is not. 

16.70  Testing the correlation between education  
spending and population. In Exercise 16.53 (page 16-40),  
we assessed the significance of the correlation between  
education spending and population by creating bootstrap  
confidence intervals. If a 95% confidence interval does not  
cover 0, the observed correlation is significantly different  
from 0 at the a  5 0.05 level. Let’s do a test that provides a  
P-value. Carry out a permutation test and give the P-value.  

What do you conclude? Is your conclusion consistent with  
your work in Exercise 16.53? EDSPEND 

16.71  Assessing a summer language institute.  
Exercise 7.47 (page 432) gives data on a study of the 
effect of a summer language institute on the ability of 
high school language teachers to understand spoken 
French. This is a matched pairs study, with scores for 20 
teachers at the beginning (pretest) and end (posttest) of 
the institute. We conjecture that the posttest scores are 
higher on the average. FRENCH 

(a) Carry out the matched pairs t test. That is, state  
hypotheses, calculate the test statistic, and give its P-value. 

(b) Make a Normal quantile plot of the gains: posttest 
score2pretest score. The data have a number of ties  
and a low outlier. A permutation test can help check the  
t test result. 

(c) Carry out the permutation test for the difference in 
means in a matched pairs setting, using 9999 resamples. 
The Normal quantile plot shows that the permutation 
distribution is reasonably Normal. What is the P-value 
for the permutation test? Do your tests in parts (a) and 
(c) lead to the same practical conclusion? 

16.72  Compare the medians. Refer to the previous 
exercise. Use a permutation test to compare the medians. 
Write a short summary of your results and conclusions. 
Include a comparison of what you found here with what 
you found in the previous exercise. FRENCH 

16.73  Testing the correlation between price and 
rating. Example 16.10 (page 16-35) uses the bootstrap to 
find a confidence interval for the correlation between 
price and rating for 24 laundry detergents. Let’s use a 
permutation test to examine this correlation. LAUND24 

(a) State the null and alternative hypotheses. 

(b) Perform a permutation test based on the sample 
correlation. Report the P-value and draw a conclusion. 

16.74  Comparing mpg calculations. Exercise 7.41 
(page 430) gives data on a comparison of driver and 
computer mpg calculations. This is a matched pairs 
study, with mpg values for 20 fill-ups. MPG20 

(a) Carry out the matched pairs t test. That is, state  
hypotheses, calculate the test statistic, and give its P-value. 

(b) A permutation test can help check the t test result. 
Carry out the permutation test for the difference in means 
in a matched pairs setting, using 10,000 resamples. Does 
this test and the test in part (a) lead to the same practical 
conclusion? 

16.75  Comparing standard deviations. In Example 12.16   
(page 666), the modified Levene’s test was used to  
compare standard deviations. Let’s instead consider  
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TABLe 16.3 serum retinol Levels (mmol/l) in Two groups of Children 

Not infected Infected 

0.59 1.08 0.88 0.62 0.46 0.39 0.68 0.56 1.19 0.41 0.84 0.37 

1.44 1.04 0.67 0.86 0.90 0.70 0.38 0.34 0.97 1.20 0.35 0.87 

0.35 0.99 1.22 1.15 1.13 0.67 0.30 1.15 0.38 0.34 0.33 0.26 

0.99 0.35 0.94 1.00 1.02 1.11 0.82 0.81 0.56 1.13 1.90 0.42 

0.83 0.35 0.67 0.31 0.58 1.36 0.78 0.68 0.69 1.09 1.06 1.23 

1.17 0.35 0.23 0.34 0.49 0.69 0.57 0.82 0.59 0.24 0.41 

0.36 0.36 0.39 0.97 0.40 0.40 

0.24 0.67 0.40 0.55 0.67 0.52 

0.23 0.33 0.38 0.33 0.31 0.35 

0.82 

performing a permutation test using the F statistic (ratio  
of the largest and smallest sample variances) as your  
statistic. What do you conclude? Are the two tests  
comparable? FRIENDS 

16.76  Comparing serum retinol levels. The formal 
medical term for vitamin A in the blood is serum retinol. 
Serum retinol has various beneficial effects, such as 
protecting against fractures. Medical researchers working 
with children in Papua New Guinea asked whether recent 
infections reduce the level of serum retinol. They 
classified children as recently infected or not on the basis 
of other blood tests and then measured serum retinol. Of 
the 90 children in the sample, 55 had been recently 
infected. Table 16.3 gives the serum retinol levels for both 
groups, in micromoles per liter.9  RETINOL 

(a) The researchers are interested in the proportional 
reduction in serum retinol. Verify that the mean 
for infected children is 0.620 and that the mean for 
uninfected children is 0.778. 

(b) There is no standard test for the null hypothesis 
that the ratio of the population means is 1. We can do a 
permutation test on the ratio of sample means. Carry out 
a one-sided test and report the P-value. Briefly describe 
the center and shape of the permutation distribution. 
Why do you expect the center to be close to 1? 

16.77  Methods of resampling. In Exercise 16.76, we 
did a permutation test for the hypothesis “no difference 
between infected and uninfected children’’ using the ratio 
of mean serum retinol levels to measure “difference.’’ We 
might also want a bootstrap confidence interval for the 
ratio of population means for infected and uninfected 
children. Describe carefully how resampling is done 
for the permutation test and for the bootstrap, paying 
attention to the difference between the two resampling 
methods. 

16.78  Listening to podcasts. A 2012 Edison Research  
asked U.S. individuals age 12 and older whether or not  

they had ever listened to a podcast. The survey was  
repeated with different users in 2015. For the 2012 survey,  
586 of the 2020 people surveyed reported that they had  
listened to at least one audio podcast. In the 2015 survey,  
the results were 660 of the 2002 survey participants.  
We want to use these sample data to test equality of  
the population proportions of successes. Carry out a  
permutation test. Describe the permutation distribution.  
Give the P-value and report your conclusion. 

16.79  Sex and GPA. In Exercise 16.51 (page 16-39), we 
used the bootstrap to compare the mean GPA scores for 
men and women. GPA 

(a) Use permutation methods to compare the means for 
men and women. 

(b) Use permutation methods to compare the standard 
deviations for men and women. 

(c) Write a short paragraph summarizing your results 
and conclusions. 

16.80  Sadness and spending. A study of sadness and 
spending randomized subjects to watch videos designed 
to produce sad or neutral moods. Each subject was given 
$10, and after watching the video, he or she was asked to 
trade $0.50 increments of their $10 for an insulated 
bottle of water. Here are the data: SADNESS 

Group Purchase price 

Neutral 0.00 

2.00 

2.00 

1.00 

0.00 

0.00 

1.00 

0.00 

0.50 

0.00 

0.00 0.50 

1.00 0.00 

Sad 3.00 

1.50 

4.00 

1.50 

0.50 

2.50 

1.00 

4.00 

2.50 

3.00 

2.00 

3.50 1.00 3.50 

1.50 0.00 1.00 

(a) Use the two-sample t significance test (page 440) to 
compare the means of the two groups. Summarize your 
results. 



16_Moore_13387_Ch16_01-57.indd   54 06/10/16   9:55 PM

 16-54 Chapter 16 Bootstrap Methods and Permutation Tests 

(b) Use the pooled two-sample t significance test 
(page 449) to compare the means of the two groups. 
Summarize your results. 

(c) Use a permutation test to compare the two groups. 
Summarize your results. 

(d) Discuss the differences among the results you found 
for parts (a), (b), and (c). Which method do you prefer? 
Give reasons for your answer. 

16.81  Comparing the variances for sadness and 
spending. Refer to the previous example. Some 
treatments in randomized experiments such as this can 
cause variances to be different. Are the variances of the 
neutral and sad subjects equal? SADNESS 

(a) Use the modified Levene’s  test for equality of variances  
(page 665) to answer this question. Summarize your results. 

(b) Compare the variances using a permutation test. 
Summarize your results. 

(c) Write a short paragraph comparing the modified 
Levene’s  test with the permutation test for these data. 

16.82  Comparing two operators. Exercise 7.45  
(page 431) gives these data on a delicate measurement  

of total body bone mineral content made by two operators  
on the same eight subjects:10  TBBMC 

Subject  

Operator 1 2 3 4 5 6 7 8 

1 1.328 1.342 1.075 1.228 0.939 1.004 1.178 1.286 

2 1.323 1.322 1.073 1.233 0.934 1.019 1.184 1.304 

Do permutation tests give good evidence that measurements  
made by the two operators differ systematically? If so, in  
what way do they differ? Do two tests, one that compares  
centers and one that compares spreads. 

cHAPTEr 16  EXERCISES 

16.83  Trimmed mean of GPA.  In Example 16.5 (page 16-16),  
you used the bootstrap to find a 95% confidence interval for  
the 25% trimmed mean of GPA. Let’s change the statistic of  
interest to the 5% trimmed mean. Using Example 16.5 as a  
guide, find the corresponding 95% confidence interval.  
Compare this interval with the one in Example 16.5.  GPA 

16.84  Change the trim. Refer to the previous exercise. 
Change the statistic of interest to the 10% trimmed  
mean. Answer the questions in the previous exercise  
and also compare your new interval with the one you 
found there. GPA 

16.85  Compare the correlations. In Exercise 16.51 
(page 16-39), we compared the mean GPA for men and 
women using the bootstrap. In Exercise 16.52, we used 
the bootstrap to examine the correlation between GPA 
and high school math grades. Let’s find the correlations 
for men and women separately and ask whether there is 
evidence that they differ. GPA 

(a) Find the correlation between GPA and high school 
math grades for the men. Use the bootstrap to find a 95% 
confidence interval for the population correlation. 

(b) Repeat part (a) for the women. 

(c) Use the bootstrap to test the null hypothesis that 
the population correlations for men and women are the 
same, rMen  5  rWomen. 

(d) Summarize your findings. 

16.86  Use the regression slope. Refer to the previous 
exercise, where we used correlations to address the 
question of whether or not the relationship between GPA 
and high school math grades is the same for men and 
women. In Exercise 16.56 (page 16-40), we used the 
bootstrap to examine the slope of the least-squares 
regression line for predicting GPA using high school 
math grades. Let’s compute the slope separately for men 
and women and ask whether or not they differ. This is 
another way to ask the question about whether or not the 
relationship between GPA and high school math grades is 
the same for men and women. Answer the questions 
from the previous exercise using the slope. Compare the 
results that you find here with those you found in the 
previous exercise. GPA 

16.87  Bootstrap confidence interval for the 
difference in proportions. Refer to Exercise 16.78 
(page 16-53). We want a 95% confidence interval for the 
change from 2012 to 2015 in the proportions of U.S. 
residents who report that they have listened to at least 
one podcast. Bootstrap the sample data. Give all three 
bootstrap confidence intervals (t, percentile, and BCa). 
Compare the three intervals and summarize the results. 
Which intervals would you recommend? Give reasons for 
your answer. 

16.88  Bootstrap confidence interval for the ratio.  
Here is one conclusion from the data in Table 16.3, 

described in Exercise 16.76: “The mean serum retinol 
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level in uninfected children was 1.255 times the mean 
level in the infected children. A 95% confidence interval 
for the ratio of means in the population of all children in 
Papua New Guinea is . . . .’’ RETINOL 

(a) Bootstrap the data and use the BCa method to 
complete this conclusion. 

(b) Briefly describe the shape and bias of the bootstrap 
distribution. Does the bootstrap percentile interval agree 
closely with the BCa interval for these data? 

16.89  Poetry: an occupational hazard. According to 
William Butler Yeats, “She is the Gaelic muse, for she 
gives inspiration to those she persecutes. The Gaelic 
poets die young, for she is restless, and will not let them 
remain long on earth.’’ One study designed to investigate 
this issue examined the age at death for writers from 
different cultures and sexes.11 

In Example 1.31 (page 37), we examined the distri­
butions of the age at death for female novelists, poets, and  
nonfiction writers. Figure 1.15 shows modified side-by-side  
boxplots for the three categories of writers. The poets do  
appear to die young! Note that there is an outlier among  
the nonfiction writers. This writer died at the age of 40,  
young for a nonfiction writer, but not for a novelist or a  
poet! Let’s use the methods of this chapter to compare the  
ages at death for poets and nonfiction writers. POETS 

(a) Use numerical and graphical summaries to describe 
the distribution of age at death for the poets. Do the 
same for the nonfiction writers. 

(b) Use the methods of Chapter 7 (page 440) to compare the  
means of the two distributions. Summarize your findings. 

(c) Use the bootstrap methods of this chapter to compare 
the means of the two distributions. Summarize your 
findings. 

16.90  Medians for the poets. Refer to the previous 
exercise. Use the bootstrap methods of this chapter to 
compare the medians of the two distributions. 
Summarize your findings and compare them with 
part (c) of the previous exercise. POETS 

16.91  Permutation test for the poets. Refer to  
Exercise 16.89. Answer part (c) of that exercise using the 
permutation test. Summarize your findings and compare 
them with what you found in Exercise 16.89. POETS 

16.92  Variance for poets. Refer to Exercises 16.89  
and 16.91. 

(a) Instead of comparing means, compare variances using 
the ratio of sample variances as the statistic. Summarize 
your findings. 

(b) Explain how questions about the equality of standard 
deviations are related to questions about the equality of 
variances. 

(c) Use the results of this exercise and the previous  
three exercises to address the question of whether or not 
the distributions of the poets and nonfiction writers are 
the same. POETS 

16.93  Bootstrap confidence interval for the median. 
Your software can generate random numbers that  
have the uniform distribution on 0 to 1. Figure 4.9  
(page 240) shows the density curve. Generate a sample  
of 50 observations from this distribution. 

(a) What is the population median? Bootstrap the sample 
median and describe the bootstrap distribution. 

(b) What is the bootstrap standard error? Compute a 95% 
bootstrap t confidence interval. 

(c) Find the 95% BCa confidence interval. Compare  
with the interval in (b). Is the bootstrap t interval  
reliable here? 

16.94  Are female personal trainers, on average, 
younger? A fitness center employs 20 personal trainers. 
Here are the ages in years of the female and male 
personal trainers working at this center: TRAIN 

Male 25 26 23 32 35 29 30 28 31 32 29 

Female 21 23 22 23 20 29 24 19 22 

(a) Make a back-to-back stemplot. Do you think the 
difference in mean ages will be significant? 

(b) A two-sample t test gives P  , 0.001 for the null 
hypothesis that the mean age of female personal trainers 
is equal to the mean age of male personal trainers. Do a 
two-sided permutation test to check the answer. 

(c) What do you conclude about using the t test? What  
do you conclude about the mean ages of the trainers? 

16.95  Adult gamers versus teen gamers. A Pew  
survey compared adult and teen gamers on where 
they played games. For the adults, 54% of 1063 survey 
participants played on game consoles such as Xbox, 
PlayStation, and Wii. For teens, 89% of 1064 survey 
participants played on game consoles. Use the bootstrap 
to find a 95% confidence interval for the difference 
between the teen proportion who play on consoles and 
the adult proportion. 

16.96  Use a ratio for adult gamers versus teen 
gamers. Refer to the previous exercise. In many  
settings, researchers prefer to communicate the 
comparison of two proportions with a ratio. For gamers 
who play on consoles, they would report that teens  
are 1.65 (89/54) times more likely to play on consoles. 
Use the bootstrap to give a 95% confidence interval for 
this ratio. 
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16.97  Another way to communicate the result.  
Refer to the previous two exercises. Here is another 

way to communicate the result: teen gamers are 65% 
more likely to play on consoles than adult gamers. 

(a) Explain how the 65% is computed. 

(b) Use the bootstrap to give a 95% confidence interval 
for this estimate. 

(c) Based on this exercise and the previous two, which of 
the three ways is most effective for communicating the 
results? Give reasons for your answer. 

16.98  Insurance fraud? Jocko’s Garage has been 
accused of insurance fraud. Data on estimates (in 

dollars) made by Jocko and another garage were 
obtained for 10 damaged vehicles. Here is what the 
investigators found: GARAGE 

Car 1 2 3 4 5 

Jocko’s 1375 1550 1250 1300 900 

Other 1250 1300 1250 1200 950 

Car 

Jocko’s 

Other 

6 7 8 9 10 

1500 1750 3600 2250 2800 

1575 1600 3300 2125 2600 

(a) Compute the mean estimate for Jocko and the mean 
estimate for the other garage. Report the difference in 
the means and the 95% standard t confidence interval. 

Be sure to choose the appropriate t procedure for your 
analysis and explain why you made this choice. 

(b) Use the bootstrap to find the confidence interval. Be 
sure to give details about how you used the bootstrap, 
which options you chose, and why. 

(c) Compare the t interval with the bootstrap interval. 

16.99  Other ways to look at Jocko’s estimates.  
Refer to the previous exercise. Let’s consider some 

other ways to analyze these data. GARAGE 

(a) For each damaged vehicle, divide Jocko’s estimate 
by the estimate from the other garage. Perform your 
analysis on these data. Write a short report that includes 
numerical and graphical summaries, your estimate, the 
95% t confidence interval, the 95% bootstrap confidence 
interval, and an explanation for all choices (such as 
whether you chose to examine the mean or the median, 
bootstrap options, etc.). 

(b) Compute the mean of Jocko’s estimates and the mean 
of the estimates made by the other garage. Divide Jocko’s 
mean by the mean for the other garage. Report this ratio 
and find a 95% confidence interval for this quantity. Be 
sure to justify choices that you made for the bootstrap. 

(c) Using what you have learned in this exercise and the 
previous one, how would you summarize the comparison 
of Jocko’s estimates with those made by the other garage? 
Assume that your audience knows very little about 
statistics but a lot about insurance. 

cHAPTEr 16  NOTES AND DATA SOURCES  

1.  Information about this free software is available at 
r-project.org. 

2.  The origin of this quaint phrase is Rudolph Raspe, 
The Singular Adventures of Baron Munchausen, 1786. 
Here is the passage, from the edition by John Carswell, 
Heritage Press, 1952: “I was still a couple of miles above 
the clouds when it broke, and with such violence I fell 
to the ground that I found myself stunned, and in a hole 
nine fathoms under the grass, when I recovered, hardly 
knowing how to get out again. Looking down, I observed 
that I had on a pair of boots with exceptionally sturdy 
straps. Grasping them firmly, I pulled with all my might. 
Soon I had hoist myself to the top and stepped out on 
terra firma without further ado.” 

3.  In fact, the bootstrap standard error underestimates 
the true standard error. Bootstrap standard errors are 
generally too small by a factor of roughly Ï1 2 1/n. This 
factor is about 0.95 for n  5 10 and 0.98 for n  5 25, so we 
ignore it in this elementary exposition. 

4.  The 254 winning numbers and their payoffs are 
republished here by permission of the New Jersey State 
Lottery Commission. 

5.  The vehicle is a 2002 Toyota Prius previously owned 
by the third author. 

6.  The standard advanced introduction to bootstrap  
methods is B. Efron and R. Tibshirani, An Introduction  
to the Bootstrap, Chapman and Hall, 1993. For tilting  
intervals, see B. Efron, “Nonparametric standard errors and  
confidence intervals” (with discussion), Canadian Journal  
of Statistics, 36 (1981), pp. 369–401; and T. J. DiCiccio  
and J. P. Romano, “Nonparametric confidence limits  
by resampling methods and least favourable families,”  
International Statistical Review, 58 (1990), pp. 59–76. 

7.  This example is adapted from Maribeth C. Schmitt, 
“The effects of an elaborated directed reading activity 
on the metacomprehension skills of third graders,” PhD 
dissertation, Purdue University, 1987. 
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8.  These data were collected as part of a larger study 
of dementia patients conducted by Nancy Edwards, 
School of Nursing, and Alan Beck, School of Veterinary 
Medicine, Purdue University. 

9.  Data provided by Francisco Rosales of the Department 
of Nutritional Sciences, Pennsylvania State University. 
See Francisco Rosales et al., “Relation of serum retinol 
to acute phase proteins and malarial morbidity in Papua 
New Guinea children,” American Journal of Clinical 
Nutrition, 71 (2000), pp. 1580–1588. 

10.  These data were collected in connection with a bone 
health study at Purdue University and were provided by 
Linda McCabe. 

11.  The data were provided by James Kaufman.  
The study is described in James C. Kaufman, “The  
cost of the muse: poets die young,” Death Studies, 27 
(2003), pp. 813–821. The quote from Yeats appears in  
this article. 
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