
IPS9 in R: Inference for Categorical Data (Chapter 9)
Shukry Zablah (szablah20@amherst.edu) and Nicholas Horton (nhorton@amherst.edu)

January 19, 2019

Introduction and background

These documents are intended to help describe how to undertake analyses introduced as examples in the
Ninth Edition of Introduction to the Practice of Statistics (2017) by Moore, McCabe, and Craig.

More information about the book can be found here. The data used in these documents can be found under
Data Sets in the Student Site. This file as well as the associated R Markdown reproducible analysis source
file used to create it can be found at https://nhorton.people.amherst.edu/ips9/.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org), an NSF-funded
effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum.
In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory
statistics courses. A short summary of the R needed to teach introductory statistics can be found in the
mosaic package vignettes (http://cran.r-project.org/web/packages/mosaic). A paper describing the mosaic
approach was published in the R Journal: https://journal.r-project.org/archive/2017/RJ-2017-024.

Chapter 9: Inference for Categorical Data

This file replicates the analyses from Chapter 9: Inference for Categorical Data.

First, load the packages that will be needed for this document:
library(mosaic)
library(readr)

Section 9.1: Inference for two-way tables

To recreate the dataset that was used in Example 9.1, we will use a combination of several do() calls and
rbind(). This will allow us to create the observations with the specific attributes based on the counts that
appear in the table.

We recreate it like this.
#Ex9.1
Instag <- rbind(

do(298) * data.frame(Sex = "Men", User = "No"),
do(209) * data.frame(Sex = "Women", User = "No"),
do(234) * data.frame(Sex = "Men", User = "Yes"),
do(328) * data.frame(Sex = "Women", User = "Yes")

)
head(Instag)

Sex User .row .index
1 Men No 1 1
2 Men No 1 2
3 Men No 1 3
4 Men No 1 4
5 Men No 1 5

1

mailto:szablah20@amherst.edu
mailto:nhorton@amherst.edu
https://macmillanlearning.com/Catalog/product/introductiontothepracticeofstatistics-ninthedition-moore
https://www.macmillanlearning.com/catalog/studentresources/ips9e?_ga=2.29224888.526668012.1531487989-1209447309.1529940008
https://nhorton.people.amherst.edu/ips9/
http://www.mosaic-web.org
http://cran.r-project.org/web/packages/mosaic
https://journal.r-project.org/archive/2017/RJ-2017-024

6 Men No 1 6

We take a small peek of the dataset with the head() function that returns the first few observations from a
given dataset. Some useful columns were returned with our dataset. You don’t have to worry about them
now.

We will get some tables that summarize the information displayed in Ex9.1. We can use the tally() function
for this.
#Ex9.1
tally(User ~ Sex, data = Instag, margin = TRUE)

Sex
User Men Women
No 298 209
Yes 234 328
Total 532 537
tally(User ~ Sex, data = Instag, format = "proportion", margin = TRUE)

Sex
User Men Women
No 0.5601504 0.3891993
Yes 0.4398496 0.6108007
Total 1.0000000 1.0000000

Now take look at Example 9.2 in page 526. To recreate that table of counts we simply have to call the
tally() function and it will make the 2-way table for us. We call it like this:
#Ex9.2
tally(~ User + Sex, data = Instag, margins = TRUE)

Sex
User Men Women Total
No 298 209 507
Yes 234 328 562
Total 532 537 1069

The margins = TRUE option makes sure that tally() ouputs the convenient Total columns just like in page
527. To understand the difference between our last two tally() calls, look at the Total column of our tables.

Turn your attention to Example 9.3 now. After creating the dataset from the counts, we can use a similar
tally() call to recreate the table and verify that our method to create the dataset is in fact accurate.
#Ex9.3
Vaccine <- rbind(

do(729) * data.frame(Required = "Yes", Party = "Democratic"),
do(479) * data.frame(Required = "Yes", Party = "Republican"),
do(230) * data.frame(Required = "No", Party = "Democratic"),
do(258) * data.frame(Required = "No", Party = "Republican")

)

tally(~ Required + Party, data = Vaccine, margins = TRUE)

Party
Required Democratic Republican Total
Yes 729 479 1208
No 230 258 488
Total 959 737 1696

2

Now we continue to explore our 2 way tables. In Example 9.5 we can see the marginal distribution of our
Vaccine tables across political party preference. We recreate it with a call to tally() but this time we will
use a new parameter too.
#Ex9.5
tally(Required ~ Party, data = Vaccine, margins = TRUE, format = "percent")

Party
Required Democratic Republican
Yes 76.01668 64.99322
No 23.98332 35.00678
Total 100.00000 100.00000

The format = "percent" will nicely output the results in percentage form!

The output from tally() is good enough. However, a picture is worth a thousand words. Let’s try to create
a bar graph out of the Vaccine dataset.
#Ex9.6
gf_percents(~ Required, data = Vaccine, fill = ~ Party, position = "dodge")

0

10

20

30

40

Yes No

Required

pe
rc

en
t Party

Democratic

Republican

With the help of gf_percents() we can plot the percentage of each group (e.g. Democratic & “No”) and
compare them. This is a useful way to draw insights from two variables at once.

Note: This is not an equivalent bar graph but still provides the same useful information. The original bar
graph in page 530 graphs the percentages across political party (i.e. adding both columns belonging to a
party will give 100%).

Another way that we can visualize two categorical variables is to create a mosaic plot. We will use the vcd
package’s mosaic() function to plot the mosaic plot. Note the call resembles the same syntax of the tally()
commands we made earlier.
#Ex9.7
vcd::mosaic(Required ~ Party, data = Vaccine, shade = TRUE)

3

Required
P

ar
ty

R
ep

ub
lic

an
D

em
oc

ra
tic

Yes No

Having multiple ways to visualize varibles will help you analyze your data more thoroughly and communicate
your findings in a more intuitive way.

In Example 9.7 we are interested in getting the expected counts of our Vaccine data. In R you can take
advantage of the xchisq.test() function and get the relevant output like this:
#Ex9.8 pg.533
chiSqVaccine <- xchisq.test(tally(Required ~ Party, data = Vaccine), correct = FALSE)

##
Pearson's Chi-squared test
##
data: x
X-squared = 24.709, df = 1, p-value = 6.666e-07
##
729 479
(683.06) (524.94)
[3.09] [4.02]
< 1.76> <-2.01>
##
230 258
(275.94) (212.06)
[7.65] [9.95]
<-2.77> < 3.15>
##
key:
observed
(expected)
[contribution to X-squared]
<Pearson residual>
with(chiSqVaccine, expected)

Party
Required Democratic Republican
Yes 683.0613 524.9387
No 275.9387 212.0613

To understand what is going on in this code, break it down into its components. We are creating a variable
called chiSqVaccine and we are assigning the output of the xchisq.test() call. The object stored in our
variable will contain several useful fields as we will see. The first one is the expected values. To extract it
from the object we use the with() function.

4

Note: We specify the correct = FALSE option to match the book’s table. This option specifies that there
should be no continuity correction applied to our test. You can see how the output changes by removing that
option.

In a manner similar to the one above, we can get the observed counts we calculated with tally() before.
We just retrieve the relevant field from our object with the with() function again.
#Ex9.8
with(chiSqVaccine, observed)

Party
Required Democratic Republican
Yes 729 479
No 230 258

To see the output of the Chi-Square test discussed in Example 9.8 we just need to print the object we stored
in our variable earlier.
#Ex9.8
chiSqVaccine

##
Pearson's Chi-squared test
##
data: x
X-squared = 24.709, df = 1, p-value = 6.666e-07

All this useful features are already built into how R’s xchisq.test() function works.

Note: There is an error in the χ2 value in the book. While it showed the correct machine output, it specified
the wrong χ2 squared value.

We continue with Example 9.9 in page 537.
#Ex9.9
Health <- rbind(

do(69) * data.frame(PhysAct = "Low", FruitConsumption = "Low"),
do(206) * data.frame(PhysAct = "Moderate", FruitConsumption = "Low"),
do(294) * data.frame(PhysAct = "Vigorous", FruitConsumption = "Low"),
do(25) * data.frame(PhysAct = "Low", FruitConsumption = "Medium"),
do(126) * data.frame(PhysAct = "Moderate", FruitConsumption = "Medium"),
do(170) * data.frame(PhysAct = "Vigorous", FruitConsumption = "Medium"),
do(14) * data.frame(PhysAct = "Low", FruitConsumption = "High"),
do(111) * data.frame(PhysAct = "Moderate", FruitConsumption = "High"),
do(169) * data.frame(PhysAct = "Vigorous", FruitConsumption = "High")

)

You should already know what is happening in the code chunk above. We will store the dataset into a variable
called Health.

Now we recreate the table in page 537 as follows:
#Ex9.9
tally(~ FruitConsumption + PhysAct, data = Health, margins = TRUE)

PhysAct
FruitConsumption Low Moderate Vigorous Total
Low 69 206 294 569
Medium 25 126 170 321
High 14 111 169 294

5

Total 108 443 633 1184

The table above is the 2 way table of counts from the Health data. To get the percentages instead we use the
format parameter.
#Ex9.10
tally(~ FruitConsumption + PhysAct, data = Health, margins = TRUE, format = "percent")

PhysAct
FruitConsumption Low Moderate Vigorous Total
Low 5.827703 17.398649 24.831081 48.057432
Medium 2.111486 10.641892 14.358108 27.111486
High 1.182432 9.375000 14.273649 24.831081
Total 9.121622 37.415541 53.462838 100.000000

Again, visualizations will trump tables in all appropriate cases. We will create a faceted bar graph.
#Fig9.7
gf_percents(~ FruitConsumption | PhysAct, data = Health)

Low Moderate Vigorous

Low Medium High Low Medium High Low Medium High

0

5

10

15

20

25

FruitConsumption

pe
rc

en
t

Note: These are not equivalent bar graphs to Figure 9.7, but they still provide the same useful information.

Now, let’s get the expected counts for our Health data.
#Ex9.11
chiSqHealth <- xchisq.test(tally(FruitConsumption ~ PhysAct, data = Health), correct = FALSE)

##
Pearson's Chi-squared test
##
data: x
X-squared = 14.152, df = 4, p-value = 0.006824
##
69 206 294
(51.90) (212.89) (304.20)
[5.6325] [0.2233] [0.3422]
< 2.373> <-0.473> <-0.585>
##
25 126 170
(29.28) (120.10) (171.62)

6

[0.6257] [0.2895] [0.0152]
<-0.791> < 0.538> <-0.123>
##
14 111 169
(26.82) (110.00) (157.18)
[6.1262] [0.0091] [0.8888]
<-2.475> < 0.095> < 0.943>
##
key:
observed
(expected)
[contribution to X-squared]
<Pearson residual>
with(chiSqHealth, expected)

PhysAct
FruitConsumption Low Moderate Vigorous
Low 51.90203 212.8944 304.2035
Medium 29.28041 120.1039 171.6157
High 26.81757 110.0017 157.1807

And our observed counts. . .
#Ex9.11
with(chiSqHealth, observed)

PhysAct
FruitConsumption Low Moderate Vigorous
Low 69 206 294
Medium 25 126 170
High 14 111 169

And finally our χ2 statistic.
#Ex9.11
chiSqHealth

##
Pearson's Chi-squared test
##
data: x
X-squared = 14.152, df = 4, p-value = 0.006824

Remember these are all possible thans to the functionality of the xchisq.test() function.

Section 9.2: Goodness of fit

We will be using data of the ACT from six different states. We recreate our dataset from the counts.
#Ex9.13
ACT <- rbind(

do(167) * data.frame(State = "AZ", label = 1),
do(257) * data.frame(State = "CA", label = 2),
do(257) * data.frame(State = "HI", label = 3),
do(297) * data.frame(State = "IN", label = 4),
do(107) * data.frame(State = "NV", label = 5),

7

do(482) * data.frame(State = "OH", label = 6)
)

To get a sense of the number of participants in the study (pg 546) we can quickly do a tally() call on the
State column.
#Ex9.13
tally(~ State, data = ACT, margins = TRUE)

State
AZ CA HI IN NV OH Total
167 257 257 297 107 482 1567

We will now import the population proportions from a csv file. We will use these values to see how close our
sample counts are to the population values.
#Ex9.13
ACTPopProp <- read_csv("https://nhorton.people.amherst.edu/ips9/data/chapter09/EG09-13ACT.csv")
ACTPopProp

A tibble: 6 x 4
State Label Count Prob
<chr> <dbl> <dbl> <dbl>
1 AZ 1 167 0.105
2 CA 2 257 0.172
3 HI 3 257 0.164
4 IN 4 297 0.188
5 NV 5 107 0.07
6 OH 6 482 0.301

We will use the same xchisq.test() function from before. It is important to note the new behavior we
expect from the function when we provide a vector of the population proportions. The expected counts and
the χ2 value will depend on this new parameter.
#Ex9.13
chisqACT <- xchisq.test(tally(~ State, data = ACT), p = c(0.105, .172, .164, .188, .07, .301), correct = FALSE)

##
Chi-squared test for given probabilities
##
data: x
X-squared = 0.93084, df = 5, p-value = 0.9679
##
167 257 257 297 107 482
(164.53) (269.52) (256.99) (294.60) (109.69) (471.67)
[3.7e-02] [5.8e-01] [5.6e-07] [2.0e-02] [6.6e-02] [2.3e-01]
< 0.19217> <-0.76286> < 0.00075> < 0.14006> <-0.25684> < 0.47578>
##
key:
observed
(expected)
[contribution to X-squared]
<Pearson residual>

Now that we have saved our object, we can access the expected counts and the test statistic just like before.
#Ex9.13
with(chisqACT, expected)

8

AZ CA HI IN NV OH
164.535 269.524 256.988 294.596 109.690 471.667
#Ex9.14
chisqACT

##
Chi-squared test for given probabilities
##
data: x
X-squared = 0.93084, df = 5, p-value = 0.9679

Another example of a field included in the return value of the xchisq.test() is the residuals field. Let’s
take a look.
#Ex9.15
with(chisqACT, residuals)

State
AZ CA HI IN NV
0.1921709671 -0.7628591106 0.0007485569 0.1400622312 -0.2568436078
OH
0.4757827403

And just like that, let R help you with most of the computations when you are analyzing your categorical
variables.

9

	Introduction and background
	Chapter 9: Inference for Categorical Data
	Section 9.1: Inference for two-way tables
	Section 9.2: Goodness of fit

