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25 Multiple Regression*

25.1	 Two Predictors

25.2	 What Multiple Regression 
Coefficients Mean

25.3	 The Multiple Regression 
Model

25.4	 Multiple Regression 
Inference

25.5	 Comparing Multiple 
Regression Models

In Chapter 23, we tried to predict the percent body fat of male subjects from their 
waist size, and we did pretty well. The R2 of 67.8% says that we accounted for almost 
68% of the variability in %Body Fat by knowing only the Waist size. We completed 
the analysis by performing hypothesis tests on the coefficients and looking at the 

residuals.
But that remaining 32% of the variance has been bugging us. Couldn’t we do a better 

job of accounting for %Body Fat if we weren’t limited to a single predictor? In the full 
data set there were 15 other measurements on the 250 men. We might be able to use other 
predictor variables to help us account for the leftover variation that wasn’t accounted for 
by waist size.

What about Height? Does Height help to predict %Body Fat? Men with the same 
Waist size can vary from short and corpulent to tall and emaciated. Knowing a man has 
a 50-inch waist suggests that he’s likely to carry a lot of body fat. If we found out that he 
was 7 feet tall, that might change our impression of his body type. Knowing his Height as 
well as his Waist size might help us to make a more accurate prediction.

25.1	 Two	Predictors
Does a regression with two predictors even make sense? It does—and that’s fortunate 
because the world is too complex a place for simple linear regression alone to model it. 
A regression with two or more predictor variables is called a multiple regression. (When 
we need to note the difference, a regression on a single predictor is called a simple regres-
sion.) We’d never try to find a regression by hand, and even calculators aren’t really up to 
the task. This is a job for a statistics program on a computer. If you know how to find the 

Where are we going?
We’ve seen that the top wind 
speed in a hurricane depends 
on the central barometric pres-
sure. But what about the sea 
surface temperature? Can we 
include other variables in our 
model? Linear models are often 
useful, but the world is usually 
not so simple that a two-variable 
model does the trick. For a more 
realistic understanding, we need 
models with several variables.

Who	 250	Male	subjects

What	 Body	fat	and	waist	size

Units	 %Body	fat	and	inches

When	 1990s

Where	 United	States

Why	 Scientific	research
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regression of %Body Fat on Waist size with a statistics package, you can usually just add 
Height to the list of predictors without having to think hard about how to do it.

For simple regression, we found the Least Squares solution, the one whose coeffi-
cients made the sum of the squared residuals as small as possible. For multiple regression, 
we’ll do the same thing but this time with more coefficients. Remarkably enough, we can 
still solve this problem. Even better, a statistics package can find the coefficients of the 
least squares model easily.

Here’s a typical example of a multiple regression table:

Dependent	variable	is	%Body	Fat
R-squared	=  71.3%	 R-squared	(adjusted)	=  71.1%
s = 4.460	with	250 - 3 = 247	degrees	of	freedom

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 -3.10088	 7.686	 -0.403	 0.6870
Waist	 1.77309	 0.0716	 24.8	 …0.0001
Height	 -0.60154	 0.1099	 -5.47	 …0.0001

You should recognize most of the numbers in this table. Most of them mean what you 
expect them to.

R2 gives the fraction of the variability of %Body Fat accounted for by the multiple 
regression model. (With Waist alone predicting %Body Fat, the R2 was 67.8%.) The mul-
tiple regression model accounts for 71.3% of the variability in %Body Fat. We shouldn’t 
be surprised that R2 has gone up. It was the hope of accounting for some of that leftover 
variability that led us to try a second predictor.

The standard deviation of the residuals is still denoted s (or sometimes se to distin-
guish it from the standard deviation of y).

The degrees of freedom calculation follows our rule of thumb: The degrees of freedom is 
the number of observations (250) minus 1 for each coefficient estimated—for this model, 3.

For each predictor, we have a coefficient, its standard error, a t-ratio, and the cor-
responding P-value. As with simple regression, the t-ratio measures how many standard 
errors the coefficient is away from 0. So, we can find a P-value from a Student’s t-model 
to test the null hypothesis that the true value of the coefficient is 0.

Using the coefficients from this table, we can write the regression model:

%Body Fat = -3.10 + 1.77 Waist - 0.60 Height.

As before, we define the residuals as

Residuals = %Body Fat - %Body Fat.

We’ve fit this model with the same least squares principle: The sum of the squared 
residuals is as small as possible for any choice of coefficients.

So,	What’s	New?
So what’s different? With so much of the multiple regression looking just like simple 
regression, why devote an entire chapter to the subject?

There are several answers to this question. First—and most important—the meaning of 
the coefficients in the regression model has changed in a subtle but important way. Because 
that change is not obvious, multiple regression coefficients are often misinterpreted. This 
chapter will show some examples to help make the meaning clear.

Second, multiple regression is an extraordinarily versatile calculation, underlying 
many widely used Statistics methods. A sound understanding of the multiple regression 
model will help you to understand these other applications.

Third, multiple regression offers our first glimpse into statistical models that use more 
than two quantitative variables. The real world is complex. Simple models of the kind 
we’ve seen so far are a great start, but often they’re just not detailed enough to be useful for 
understanding, predicting, and decision making. Models that use several variables can be 
a big step toward realistic and useful modeling of complex phenomena and relationships.

A Note oN 
termiNology

When we have two or 
more predictors and fit 
a linear model by least 
squares, we are formally 
said to fit a least squares 
linear multiple regression. 
Most folks just call it “mul-
tiple regression.” You may 
also see the abbreviation 
OLS used with this kind 
of analysis. It stands for 
“Ordinary Least Squares.”
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25.2	 What	Multiple	Regression	Coefficients	Mean
We said that height might be important in predicting body fat in men. What’s the relation-
ship between %Body Fat and Height in men? We know how to approach this question; we 
follow the three rules. Here’s the scatterplot: 

For Example Real estate
As a class project, students in a large Statistics class collected publicly available 
information on recent home sales in their hometowns. There are 894 properties. 
These are not a random sample, but they may be representative of home sales  
during a short period of time, nationwide.

Variables available include the price paid, the size of the living area (sq ft), the 
 number of bedrooms, the number of bathrooms, the year of construction, the lot 
size (acres), and a coding of the location as urban, suburban, or rural made by the 
student who collected the data.

Here’s a regression to model the sale price from the living area (sq ft) and the 
number of bedrooms.

Dependent	variable	is	Price
R-squared	=  14.6%	 R-squared	(adjusted)	=  14.4%
s = 266899	with	894 - 3 = 891	degrees	of	freedom

Variable Coefficient se(Coeff) t-Ratio P-Value
Intercept	 308100	 41148	 7.49	 …0.0001
Living	Area	 135.089	 11.48	 11.8	 …0.0001
Bedrooms	 -43346.8	 12844	 -3.37	 0.0008

Question: How should we interpret the regression output?

ansWeR: The model is

Price = 308,100 + 135 Living Area - 43,346 Bedrooms

The R-squared says that this model accounts for 14.6% of the variation in Price. 
But the value of s leads us to doubt that this model would provide very good  
predictions because the standard deviation of the residuals is more than $266,000. 
Nevertheless, we may be able to learn about home prices because the P-values of  
the coefficients are all very small, so we can be quite confident that none of them  
is really zero.

Figure 25.1 
The Scatterplot of %Body Fat 
against Height seems to say that 
there is little relationship between 
these variables.

40

30

20

10

0

%
 B

od
y 

Fa
t

66 69 72 75
Height (in.)

It doesn’t look like Height tells us much about %Body Fat. You just can’t tell much 
about a man’s %Body Fat from his Height. Or can you? Remember, in the  multiple 
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regression model, the coefficient of Height was -0.60, had a t-ratio of -5.47, and had a very 
small P-value. So it did contribute to the multiple regression model. How could that be?

The answer is that the multiple regression coefficient of Height takes account of the 
other predictor, Waist size, in the regression model.

To understand the difference, let’s think about all men whose waist size is about 
37 inches—right in the middle of our sample. If we think only about these men, what do 
we expect the relationship between Height and %Body Fat to be? Now a negative associa-
tion makes sense because taller men probably have less body fat than shorter men who 
have the same waist size. Let’s look at the plot: 

Figure	25.2	
When we restrict our attention to  
men with waist sizes between 36  
and 38 inches (points in blue), 
we can see a relationship between 
%Body Fat and Height.
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Here we’ve highlighted the men with waist sizes between 36 and 38 inches. Overall, 
there’s little relationship between %Body Fat and Height, as we can see from the full set 
of points. But when we focus on particular waist sizes, there is a relationship between 
body fat and height. This relationship is conditional because we’ve restricted our set to 
only those men within a certain range of waist size. For men with that waist size, an extra 
inch of height is associated with about 0.60% lower body fat. If that relationship is con-
sistent for each Waist size, then the multiple regression coefficient will estimate it. The 
simple regression coefficient simply couldn’t see it.

We’ve picked one particular Waist size to highlight. How could we look at the rela-
tionship between %Body Fat and height conditioned on all waist sizes at the same time? 
Once again, residuals come to the rescue.

We plot the residuals of %Body Fat after a regression on Waist size against the resid-
uals of Height after regressing it on Waist size. This display is called a partial regression 
plot. It shows us just what we asked for: the relationship of %Body Fat to Height after 
removing the linear effects of Waist size from both. 

residuAls

As their name reminds us, 
residuals are what’s left over 
after we fit a model. That 
lets us remove the effects 
of some variables. The resid-
uals are what’s left.

Figure	25.3	
A partial regression plot for 
the coefficient of Height in the 
regression model has a slope equal  
to the coefficient value in the  
multiple regression model.
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A partial regression plot for a particular predictor has a slope that is the same as the multiple 
regression coefficient for that predictor. Here, it’s -0.60. It also has the same residuals 
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as the full multiple regression, so you can spot any outliers or influential points and tell 
whether they’ve affected the estimation of this particular coefficient.

Many modern statistics packages offer partial regression plots as an option for any 
coefficient of a multiple regression. For the same reasons that we always look at a scatter-
plot before interpreting a simple regression coefficient, it’s a good idea to make a partial 
regression plot for any multiple regression coefficient that you hope to understand or 
interpret.

25.3	 The	Multiple	Regression	Model
We can write a multiple regression model like this, numbering the predictors arbitrarily 
(we don’t care which one is x1), writing b’s for the model coefficients (which we will esti-
mate from the data), and including the errors in the model:

y = b0 + b1x1 + b2x2 + e.

Of course, the multiple regression model is not limited to two predictor variables, 
and regression model equations are often written to indicate summing any number (a typi-
cal letter to use is k) of predictors. That doesn’t really change anything, so we’ll start 
with the two-predictor version just for simplicity. But don’t forget that we can have many 
predictors.

The assumptions and conditions for the multiple regression model sound nearly the 
same as for simple regression, but with more variables in the model, we’ll have to make a 
few changes.

Assumptions	and	Conditions
Linearity	Assumption We are fitting a linear model.1 For that to be the right kind of 
model, we need an under lying linear relationship. But now we’re thinking about several 
predictors. To see whether the assumption is reasonable, we’ll check the Straight Enough 
Condition for each of the predictors.

Straight Enough Condition: Scatterplots of y against each of the predictors are rea-
sonably straight. As we have seen with Height in the body fat example, the scatterplots 
need not show a strong (or any!) slope; we just check that there isn’t a bend or other non-
linearity. For the body fat data, the scatterplot is beautifully linear in Waist as we saw in 
Chapter 24. For Height, we saw no relationship at all, but at least there was no bend.

As we did in simple regression, it’s a good idea to check the residuals for linearity 
after we fit the model. It’s good practice to plot the residuals against the predicted values 
and check for patterns, especially bends or other nonlinearities. (We’ll watch for other 
things in this plot as well.)

If we’re willing to assume that the multiple regression model is reasonable, we can 
fit the regression model by least squares. But we must check the other assumptions and 
conditions before we can interpret the model or test any hypotheses.

Independence	Assumption	 As with simple regression, the errors in the true 
 underlying regression model must be independent of each other. As usual, there’s no way 
to be sure that the Independence Assumption is true. Fortunately, even though there can be 
many predictor variables, there is only one response variable and only one set of errors. The 
 Independence Assumption concerns the errors, so you should check the corresponding con-
ditions on the residuals.

1By linear, we mean that each x appears simply multiplied by its coefficient and added to the model. No 
x appears in an exponent or some other more complicated function. That means that as we move along 
any x-variable, our prediction for y will change at a constant rate (given by the coefficient) if nothing else 
changes.

Check the residual 
plot (Part 1) The 
 residuals should appear to have 
no pattern with respect to the 
 predicted values.
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Randomization Condition: The data should arise from a random sample or random-
ized experiment. Randomization assures us that the data are representative of some iden-
tifiable population. If you can’t identify the population, you can interpret the regression 
model only as a description of the data you have, and you can’t interpret the hypothesis 
tests at all because they are about a regression model for that population. Regression meth-
ods are often applied to data that were not collected with randomization. Regression mod-
els fit to such data may still do a good job of modeling the data at hand, but without some 
reason to believe that the data are representative of a particular population, you should be 
reluctant to believe that the model generalizes to other situations.

You should also check displays of the regression residuals for evidence of patterns, 
trends, or clumping, any of which would suggest a failure of independence. In the special 
case when one of the x-variables is related to time, be sure that the residuals do not have a 
pattern when plotted against that variable or against Time.

The body fat data were collected on a sample of men. The men were not related in any 
way, so we can be pretty sure that their measurements are independent.

Equal	Variance	Assumption	 The variability of the errors should be about the same 
for all values of each predictor. To see if this is reasonable, we look at scatterplots.

Does the Plot Thicken? Condition: Scatterplots of the regression residuals against 
each x or against the predicted values, yn, offer a visual check. The spread around the line 
should be nearly constant. Be alert for a “fan” shape or other tendency for the variability 
to grow or shrink in one part of the scatterplot. 

Here are the residuals plotted against Waist and Height. Neither plot shows patterns 
that might indicate a problem.

Check the residual 
plot (Part 2) The resid-
uals should appear to be ran-
domly scattered and show no 
patterns or clumps when plotted 
against the predicted values.

Check the residual 
plot (Part 3)  The 
spread of the residuals should 
be uniform when plotted 
against any of the x’s or 
against the predicted values.

Figure	25.4	
Residuals plotted against each  
predictor show no pattern. That’s 
a good indication that the Straight 
Enough Condition and the Does the 
Plot Thicken? Condition are satisfied.

30 35 40 45 50
Waist (in.)

10

5

–5

–10

0
R

es
id

ua
ls

66 69 72 75 78
Height (in.)

10

5

–5

–10

0

R
es

id
ua

ls

If residual plots show no pattern, if the data are plausibly independent, and if the plots 
don’t thicken, we can feel good about interpreting the regression model. Before we test 
hypotheses, however, we must check one final assumption.

Normality	Assumption	 We assume that the errors around the idealized regression 
model at any specified values of the x-variables follow a Normal model. We need this 
assumption so that we can use a Student’s t-model for inference. As with other times 
when we’ve used Student’s t, we’ll settle for the residuals satisfying the Nearly Normal 
Condition.

Nearly Normal Condition: Because we have only one set of residuals, this is the 
same set of conditions we had for simple regression. Look at a histogram or Normal prob-
ability plot of the residuals. The histogram of residuals in the body fat regression certainly 
looks Nearly Normal, and the Normal probability plot is fairly straight. And, as we have 
said before, the Normality Assumption becomes less important as the sample size grows. 

Let’s summarize all the checks of conditions that we’ve made and the order that 
we’ve made them:

	 1.	 Check the Straight Enough Condition with scatterplots of the y-variable against each 
x-variable.

	 2.	 If the scatterplots are straight enough (that is, if it looks like the regression model 
is plausible), fit a multiple regression model to the data. (Otherwise, either stop or 
consider re-expressing an x- or the y-variable.)
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Figure	25.5	
Check a histogram of the residuals. 
The distribution of the residuals 
should be unimodal and symmetric. 
Or check a Normal probability plot  
to see whether it is straight.
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	 3.	 Find the residuals and predicted values.
	 4.	 Make a scatterplot of the residuals against the predicted values.2 This plot should 

look patternless. Check in particular for any bend (which would suggest that the  
data weren’t all that straight after all) and for any thickening. If there’s a bend and 
especially if the plot thickens, consider re-expressing the y-variable and starting over.

	 5.	 Think about how the data were collected. Was suitable randomization used? Are the 
data representative of some identifiable population? If the data are measured over 
time, check for evidence of patterns that might suggest they’re not independent by 
plotting the residuals against time to look for patterns.

	 6.	 If the conditions check out this far, feel free to interpret the regression model and 
use it for prediction. If you want to investigate a particular coefficient, make a partial 
regression plot for that coefficient.

	 7.	 If you wish to test hypotheses about the coefficients or about the overall regression, 
then make a histogram and Normal probability plot of the residuals to check the 
Nearly Normal Condition.

2In Chapter 24, we noted that a scatterplot of residuals against the predicted values looked just like the plot 
of residuals against x. But for a multiple regression, there are several x’s. Now the predicted values, yn, are a 
combination of the x’s—in fact, they’re the combination given by the regression equation we have computed. 
So they combine the effects of all the x’s in a way that makes sense for our particular regression model. That 
makes them a good choice to plot against.

Step-by-Step Example Multiple RegRession

think Variables  Name the variables, report 
the W’s, and specify the questions of interest.

I have quantitative body measurements on  
250 adult males from the BYU Human Perfor-
mance Research Center. I want to understand 
the relationship between %Body Fat, Height, and 
Waist size.

➨

Plan  Think about the assumptions and 
check the conditions.

✓	 Straight Enough Condition: There is no 
obvious bend in the scatterplots of %Body 
Fat against either x-variable. The scatter-
plot of residuals against predicted values 
below shows no patterns that would suggest 
nonlinearity.

✓	 Independence Assumption: These data 
are not collected over time, and there’s no 
reason to think that the %Body Fat of one 
man influences that of another. I don’t know 
whether the men measured were sampled 
randomly, but the data are presented as  
being representative of the male population 
of the United States.

Question: How should we model %Body Fat in terms of Height and Waist size?
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✓	 Does the Plot Thicken? Condition: The 
scatterplot of residuals against predicted 
values shows no obvious changes in the 
spread about the line.
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✓	 Nearly Normal Condition, Outlier Condition: 
A histogram of the residuals is unimodal and 
symmetric.
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The Normal probability plot of the residuals is 
reasonably straight:
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Under these conditions, a full multiple regression 
analysis is appropriate.

Now we can find the regression and  
examine the residuals.

Choose your method.

Actually, we need the Nearly Normal  
Condition only if we want to do inference.
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Mechanics ShoW➨ Here is the computer output for the regression:

Dependent	variable	is	%Body	Fat
R-squared	=  71.3%	 R-squared	(adjusted)	=  71.1%
s = 4.460	with	250 - 3 = 247	degrees	of	freedom

	 Sum	of	 	 Mean	 	 	
Source	 Squares	 DF	 Square	 F-Ratio	 P-Value
Regression	 12216.6	 	 	 2	 6108.28	 307	 6 0.0001
Residual	 4912.26	 247	 19.8877	 	

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 - 3.10088	 7.686	 - 0.403	 0.6870
Waist	 1.77309	 0.0716	 24.8	 6 0.0001
Height	 - 0.60154	 0.1099	 - 5.47	 6 0.0001

The estimated regression equation is

%Body Fat = -3.10 + 1.77 Waist - 0.60 Height.

Interpretation  

More Interpretation 

tEll ➨ The R2 for the regression is 71.3%. Waist size 
and Height together account for about 71% of the 
variation in %Body Fat among men. The regression 
equation indicates that each inch in Waist size is 
associated with about a 1.77 increase in %Body Fat 
among men who are of a particular Height. Each inch 
of Height is associated with a decrease in %Body Fat 
of about 0.60 among men with a particular Waist size.

The standard errors for the slopes of 0.07 (Waist) 
and 0.11 (Height) are both small compared with the 
slopes themselves, so it looks like the coefficient  
estimates are fairly precise. The residuals have a  
standard deviation of 4.46%, which gives an indication 
of how precisely we can predict %Body Fat with this 
model.

25.4	 Multiple	Regression	Inference	
There are several hypothesis tests in the multiple regression output, but all of them talk 
about the same thing. Each is concerned with whether the underlying model parameters 
are actually zero.

The	ANOVA	Table
The first of these hypotheses is one we skipped over for simple regression (for reasons that 
will be clear in a minute). Now that we’ve looked at ANOVA (in Chapter 24),3 we can 
recognize the ANOVA table sitting in the middle of the regression output. Where’d that 
come from?

3If you skipped over Chapter 24, you can just take our word for this and read on.

M25_DEVE5278_04_SE_C25.indd   750 9/27/12   6:04 PM



Chapter 25  Multiple Regression*    751

Copyright © 2014 Pearson Education, Inc. 

The answer is that now that we have more than one predictor, there’s an overall test 
we should consider before we do more inference on the coefficients. We ask the global 
question “Is this multiple regression model any good at all?” That is, would we do as well 
using just y to model y? What would that mean in terms of the regression? Well, if all the 
coefficients (except the intercept) were zero, we’d have

yn = b0 + 0x1 +  g +  0xk

and we’d just set b0 = y.
To address the overall question, we’ll test

H0: b1 = b2 = g= bk = 0.

(That null hypothesis looks very much like the null hypothesis we tested with an F-test in 
the Analysis of Variance in Chapter 24.)

We can test this hypothesis with a statistic that is labeled with the letter F (in honor 
of Sir Ronald Fisher, the developer of Analysis of Variance). In our example, the F-value 
is 307 on 2 and 247 degrees of freedom. The alternative hypothesis is just that the slope 
coefficients aren’t all equal to zero, and the test is one-sided—bigger F-values mean 
smaller P-values. If the null hypothesis were true, the F-statistic would be near 1. The 
F-statistic here is quite large, so we can easily reject the null hypothesis and conclude that 
the multiple regression model is better than just using the mean.4

Why didn’t we do this for simple regression? Because the null hypothesis would have 
just been that the lone model slope coefficient was zero, and we were already testing that 
with the t-statistic for the slope. In fact, the square of that t-statistic is equal to the F-statistic 
for the simple regression, so it really was the identical test.

Testing	the	Coefficients
Once we check the F-test and reject the null hypothesis—and, if we are being careful, only 
if we reject that hypothesis—we can move on to checking the test statistics for the indi-
vidual coefficients. Those tests look like what we did for the slope of a simple regression 
in Chapter 23. For each coefficient, we test

H0: bj = 0

against the (two-sided) alternative that it isn’t zero. The regression table gives a standard 
error for each coefficient and the ratio of the estimated coefficient to its standard error. 
If the assumptions and conditions are met (and now we need the Nearly Normal Con-
dition), these ratios follow a Student’s t-distribution (and are called the t-ratios for the 
coefficients).

tn - k - 1 =
bj - 0

SE(bj)

How many degrees of freedom? We have a rule of thumb and it works here. The degrees 
of freedom is the number of data values minus the number of predictors (counting the inter-
cept term). For our regression on two predictors, that’s n - 3. You shouldn’t have to look 
up the t-values. Almost every regression report includes the corresponding P-values.

We can build a confidence interval in the usual way, as an estimate {  a margin of 
error. As always, the margin of error is just the product of the standard error and a critical 
value. Here the critical value comes from the t-distribution on n - k - 1 degrees of free-
dom. So a confidence interval for bj is

bj { t*n - k - 1 SE(bj).

4There are F tables in Table F at the end of Chapter 24, and they work pretty much as you’d expect. Most 
regression tables include a P-value for the F-statistic, but there’s almost never a need to perform this particular 
test in a multiple regression. Usually we just glance at the F-statistic to see that it’s reasonably far from 1.0, the 
value it would have if the true coefficients were really all zero.

M25_DEVE5278_04_SE_C25.indd   751 9/27/12   6:04 PM



752    part VII  Inference When Variables Are Related

Copyright © 2014 Pearson Education, Inc. 

The tricky parts of these tests are that the standard errors of the coefficients now require 
harder calculations (so we leave it to the technology) and the meaning of a coefficient, as 
we have seen, depends on all the other predictors in the multiple regression model.

That last bit is important. If we fail to reject the null hypothesis for a multiple regres-
sion coefficient, it does not mean that the corresponding predictor variable has no linear 
relationship to y. It means that the corresponding predictor contributes nothing to modeling 
y after allowing for all the other predictors.

Interpreting	Multiple	Regression	t-Tests
This last point bears repeating. The multiple regression model looks so simple and 
straightforward:

y = b0 + b1x1 + g + bkxk + e.

It looks like each bj tells us the effect of its associated predictor, xj, on the response 
variable, y. But that is not so. This is, without a doubt, the most common error that people 
make with multiple regression:

■	 It is possible for there to be no simple relationship between y and xj, and yet bj in a 
multiple regression can be significantly different from 0. We saw this happen for the 
coefficient of Height in our example.

■	 It is also possible for there to be a strong two-variable relationship between y and xj, 
and yet bj in a multiple regression can be almost 0 with a large P-value so that we 
cannot reject the null hypothesis that the true coefficient is zero. If we’re trying to 
model the horsepower of a car, using both its weight and its engine size, it may turn 
out that the coefficient for Engine Size is nearly 0. That doesn’t mean that engine size 
isn’t important for understanding horsepower. It simply means that after allowing for 
the weight of the car, the engine size doesn’t give much additional information.

■	 It is even possible for there to be a significant linear relationship between y and xj 
in one direction, and yet bj can be of the opposite sign and strongly significant in 
a multiple regression. More expensive cars tend to be bigger, and since bigger cars 
have worse fuel efficiency, the price of a car has a slightly negative association with 
fuel efficiency. But in a multiple regression of Fuel Efficiency on Weight and Price, 
the coefficient of Price may be positive. If so, it means that among cars of the same 
weight, more expensive cars have better fuel efficiency. The simple regression on 
Price, though, has the opposite direction because, overall, more expensive cars are 
bigger. This switch in sign may seem a little strange at first, but it’s not really a  
contradiction at all. It’s due to the change in the meaning of the coefficient of Price 
when it is in a multiple regression rather than a simple regression.

So we’ll say it once more: The coefficient of xj in a multiple regression depends as 
much on the other predictors as it does on xj. Remember that when you interpret a mul-
tiple regression model.

For Example intERPREting	CoEFFiCiEntS
We looked at a multiple regression to predict the price of a house from its living area 
and the number of bedrooms. We found the model

Price = 308, 100 + 135 Living Area - 43,346 Bedrooms.

However, common sense says that houses with more bedrooms are usually worth 
more. And, in fact, the simple regression of Price on Bedrooms finds the model

Price = 33,897 + 40,234 Bedrooms

and the P-value for the slope coefficient is 0.0005.

M25_DEVE5278_04_SE_C25.indd   752 9/27/12   6:04 PM



Chapter 25  Multiple Regression*    753

Copyright © 2014 Pearson Education, Inc. 

QuEStion:	How should we understand the coefficient of Bedrooms in the multiple 
regression?

anSWER:	The coefficient of Bedrooms in the multiple regression does not mean that 
houses with more bedrooms are generally worth less. It must be interpreted taking 
account of the other predictor (Living area) in the regression. If we consider houses 
with a given amount of living area, those that devote more of that area to bedrooms 
either must have smaller bedrooms or less living area for other parts of the house. 
Those differences could result in reducing the home’s value.

✓ Just Checking
Recall the regression example in Chapter 7 to predict hurricane maximum wind speed 
from central barometric pressure. Another researcher, interested in the possibility that 
global warming was causing hurricanes to become stronger, added the variable Year 
as a predictor and obtained the following regression:

Dependent	variable	is	Max.	Winds	(kn)
275	total	cases	of	which	113	are	missing
R-squared	=  77.9%	 R-squared	(adjusted)	=  77.6%
s = 7.727	with	162 - 3 = 159	degrees	of	freedom

Source	 Sum	of	Squares	 DF	 Mean	Square	 F-Ratio
Regression	 33446.2	 2	 16723.1	 280
Residual	 9493.45	 159	 59.7072	

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 1009.99	 46.53	 21.7	 …0.0001
Central	Pressure	 -0.933491	 0.0395	 -23.6	 …0.0001
Year	 -0.010084	 0.0123	 -0.821	 0.4128

	 1.	 Interpret the R2 of this regression.

	 2.	 Interpret the coefficient of Central Pressure.

	 3.	 The researcher concluded that “There has been no change over time in the 
strength of Atlantic hurricanes.” Is this conclusion a sound interpretation of the 
regression model?

Another	Example:	Modeling	Infant	Mortality
Infant Mortality is often used as a general measure of the quality of health care for chil-
dren and mothers. It is reported as the rate of deaths of newborns per 1000 live births. 
Data recorded for each of the 50 states of the United States may allow us to build regres-
sion models to help understand or predict infant mortality. The variables available for our 
model are Child Deaths (deaths per 100,000 children aged 1–14), percent of teens (ages 
16–19) who drop out of high school (HS Drop%), percent of low-birth-weight babies 
(Low BW%), Teen Births (births per 100,000 females aged 15–17), and Teen Deaths by 
accident, homicide, and suicide (deaths per 100,000 teens ages 15–19).5

All of these variables were displayed and found to have no outliers and Nearly Normal 
distributions.6 One useful way to check many of our conditions is with a scatterplot 
matrix. Figure 25.6 shows an array of scatterplots set up so that the plots in each row have 
the same variable on their y-axis and those in each column have the same variable on their 

Who	 U.S.	states

What	 Various	measures	relating	
to	children	and	teens

When	 1999

Why	 Research	and	policy

5The data are available from the Kids Count section of the Annie E. Casey Foundation (http://datacenter
.kidscount.org/), and are all for 1999.
6In the interest of complete honesty, we should point out that the original data include the District of Columbia, 
but it proved to be an outlier on several of the variables, so we’ve restricted attention to the 50 states here.
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x-axis. This way every pair of variables is graphed. On the diagonal, rather than plotting a 
variable against itself, you’ll usually find either a Normal probability plot or a histogram 
of the variable to help us assess the Nearly Normal Condition.

The individual scatterplots show at a glance that each of the relationships is straight 
enough for regression. There are no obvious bends, clumping, or outliers. And the plots don’t 
thicken. So it looks like we can examine some multiple regression models with inference.

Figure	25.6	
A scatterplot matrix shows a scatter-
plot of each pair of variables arrayed 
so that the vertical and horizontal 
axes are consistent across rows and 
down columns. You can tell which 
variable is plotted on the x-axis of 
any plot by reading down to the 
diagonal and looking to the left. 
The diagonal cells may hold Normal 
probability plots (as they do here), 
histograms, or just the names of the 
variables. These are a great way to 
check the Straight Enough Condition 
and to check for simple outliers.
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Step-by-Step Example inFEREnCE	FoR	MultiPlE	REgRESSion

Question: How should we model Infant Mortality using the available predictors?

Hypotheses State what we want 
to know.

I wonder whether all or some of these predictors 
contribute to a useful model for Infant Mortality.

think➨
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First, I’ll check the overall null hypothesis that 
asks whether the entire model is better than 
just modeling y with its mean:

(Hypotheses on the intercept are not particularly 
interesting for these data.)

Plan State the null model.

H0:  The model itself contributes nothing useful, 
and all the slope coefficients are zero:

b1 = b2 = g=  bk = 0.

HA: At least one of the bj is not 0.

If I reject this hypothesis, then I’ll test a null 
hypothesis for each of the coefficients of the 
form:

H0:  The j-th variable contributes nothing useful, 
after allowing for the other predictors in the 
model: bj = 0.

HA:  The j-th variable makes a useful contribution 
to the model: bj � 0.

✓	 Straight Enough Condition, Outlier 
Condition: The scatterplot matrix shows 
no bends, clumping, or outliers.

✓	 Independence Assumption: These data 
are based on random samples and can be 
considered independent.

 These conditions are enough to compute  
the regression model and find residuals.

✓	 Does the Plot Thicken? Condition: The 
residual plot shows no obvious trends in  
the spread:
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Predicted (deaths/10,000 live births)

Think about the assumptions and check the 
conditions.
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✓	 Nearly Normal Condition: A histogram of the 
residuals is unimodal and symmetric.

2.00.0–2.0
Residuals

20

15

10

5

The one possible outlier is South Dakota. I may want  
to repeat the analysis after removing South Dakota  
to see whether it changes substantially.

Under these conditions I can continue with the multiple 
regression analysis.

Choose your method.

Computer output for this regression looks like this:

Dependent	variable	is	Infant	Mort
R-squared	=  71.3%	R-squared	(adjusted) = 68.0%
s = 0.7520	with	50 - 6 = 44	degrees	of	freedom

	 Sum	of	 	 Mean	
Source	 Squares	 DF	 Square	 F-Ratio
Regression	 61.7319	 	 5	 12.3464	 21.8
Residual	 24.8843	 44	 0.565553	

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 1.63168	 0.9124	 1.79	 0.0806
Child	Deaths	 0.03123	 0.0139	 2.25	 0.0292
HS	Drop%	 - 0.09971	 0.0610	 - 1.63	 0.1096
Low	BW%	 0.66103	 0.1189	 5.56	 6 0.0001
Teen	Births	 0.01357	 0.0238	 0.57	 0.5713
Teen	Deaths	 0.00556	 0.0113	 0.49	 0.6245

The F-ratio of 21.8 on 5 and 44 degrees of freedom 
is certainly large enough to reject the default null 
hypothesis that the regression model is no better  
than using the mean infant mortality rate. So I will 
examine the individual coefficients.

Most of these coefficients have relatively small 
t-ratios, so I can’t be sure that their underlying 
values are not zero. Two of the coefficients, Child 
Deaths and Low BW%, have P-values less than 5%. 
So I can be confident that in this model both of these 
variables are unlikely to really have zero coefficients.

Mechanics Multiple regressions are 
always found from a computer program.

The P-values given in the regression output 
table are from the Student’s t-distribution on 
(n - 6) = 44 degrees of freedom. They are 
appropriate for two-sided alternatives.

Consider the hypothesis tests.

Under the assumptions we’re willing to  
accept, and considering the conditions  
we’ve checked, the individual coefficients  
follow Student’s t-distributions on 44 degrees 
of freedom.

ShoW➨
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25.5	 Comparing	Multiple	Regression	Models
There may be even more variables available to model Infant Mortality. Moreover, several 
of those we tried don’t seem to contribute to the model. How do we know that some other 
choice of predictors might not provide a better model? What exactly would make an alter-
native model better?

These are not easy questions. There is no simple measure of the success of a mul-
tiple regression model. Many people use the R2 value, and certainly we are not likely to 
be happy with a model that accounts for only a small fraction of the variability of y. But 
that’s not enough. You can always drive the R2 up by piling on more and more predictors, 
but models with many predictors are hard to understand. Keep in mind that the meaning 
of a regression coefficient depends on all the other predictors in the model, so it is best to 
keep the number of predictors as small as possible.

Regression models should make sense. Predictors that are easy to understand are usu-
ally better choices than obscure variables. Similarly, if there is a known mechanism by 
which a predictor has an effect on the response variable, that predictor is usually a good 
choice for the regression model.

How can we know whether we have the best possible model? The simple answer 
is that we can’t. There’s always the chance that some other predictors might bring an 
improvement (in higher R2 or fewer predictors or simpler interpretation).

Adjusted	R 2

You may have noticed that the full regression tables shown in this chapter include another 
statistic we haven’t discussed. It is called adjusted R2 and sometimes appears in computer 
output as R2 (adjusted). The adjusted R2 statistic is a rough attempt to adjust for the sim-
ple fact that when we add another predictor to a multiple regression, the R2  can’t go down 
and will most likely go up. Only if we were to add a predictor whose coefficient turned out 
to be exactly zero would the R2 remain the same. This fact complicates the comparison of 
alternative regression models that have different numbers of predictors.

We can write a formula for R2 using the sums of squares in the ANOVA table portion 
of the regression output table:

R2 =
SSRegression

SSRegression + SSResidual
= 1 -

SSResidual

SSTotal
.

Overall the R2 indicates that more than 71% of
the variability in Infant Mortality can be accounted 
for with this regression model.

After allowing for the linear effects of the other 
variables in the model, an increase in Child Deaths 
of 1 death per 100,000 is associated with an 
increase of 0.03 deaths per 1000 live births  
in the Infant Mortality rate. And an increase of 
1% in the percentage of live births that are low 
birth weight is associated with an increase of 
0.66 deaths per 1000 live births.

Interpretation tEll ➨
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Adjusted R2 simply substitutes the corresponding Mean Squares for the SS’s:7

R2
adj = 1 -

MSResidual

MSTotal
.

Because the Mean Squares are Sums of Squares divided by degrees of freedom, 
they are adjusted for the number of predictors in the model. As a result, the adjusted R2 
value won’t necessarily increase when a new predictor is added to the multiple regression 
model. That’s fine. But adjusted R2 no longer tells the fraction of variability accounted for 
by the model, and it isn’t even bounded by 0 and 100%, so it can be awkward to interpret.

Comparing alternative regression models is a challenge, especially when they have differ-
ent numbers of predictors. The search for a summary statistic to help us choose among models 
is the subject of much contemporary research in Statistics. Adjusted R2 is one  common—but 
not necessarily the best—choice often found in computer regression output tables. Don’t use 
it as the sole decision criterion when you compare different regression models.

Interpreting Coefficients
■	 Don’t	claim	to	“hold	everything	else	constant”	for	a	single	individual. It’s often mean-

ingless to say that a regression coefficient says what we expect to happen if all variables 
but one were held constant for an individual and the predictor in question changed. 
 Although it’s mathematically correct, it often just doesn’t make any sense. We can’t 
gain a year of experience or have another child without getting a year older. Instead, 
we can think about all those who fit given criteria on some predictors and ask about 
the conditional relationship between y and one x for those individuals. The coefficient 
-0.60 of Height for predicting %Body Fat says that among men of the same Waist size, 
those who are one inch taller in Height tend to be, on average, 0.60% lower in %Body 
Fat. The multiple regression coefficient measures that average conditional relationship.

■	 Don’t	interpret	regression	causally. Regressions are usually applied to observational 
data. Without deliberately assigned treatments, randomization, and control, we can’t 
draw conclusions about causes and effects. We can never be certain that there are no 
variables lurking in the background, causing everything we’ve seen. Don’t interpret 
b1, the coefficient of x1 in the multiple regression, by saying, “If we were to change 
an individual’s x1 by 1 unit (holding the other x’s constant) it would change his y by 
b1 units.” We have no way of knowing what applying a change to an individual would 
do. There is a linear relationship between height and weight, but neither dieting nor 
gaining weight is likely to change your height.

■	 Be	cautious	about	interpreting	a	regression	model	as	predictive. Yes, we do call 
the x’s predictors, and you can certainly plug in values for each of the x’s and find 
a corresponding predicted value, yn. But the term “prediction” suggests extrapolation 
into the future or beyond the data, and we know that we can get into trouble when we 
use models to estimate yn values for x’s not in the range of the data. Be careful not to 
extrapolate very far from the span of your data. In simple regression, it was easy to tell 
when you extrapolated. With many predictor variables, it’s often harder to know when 
you are outside the bounds of your original data.8 We usually think of fitting models to 
the data more as modeling than as prediction, so that’s often a more appropriate term.

WHat Can Go WronG?

7We learned about Mean Squares in Chapter 24. A Mean Square is just a Sum of Squares divided by its 
appropriate degrees of freedom. Mean Squares are variances.
8With several predictors, it is easy to wander beyond the data because of the combination of values even when 
individual values are not extraordinary. For example, both 28-inch waists and 76-inch heights can be found in 
men in the body fat study, but a single individual with both these measurements would not be at all typical.  
The model we fit is probably not appropriate for predicting the %Body Fat for such a tall and skinny individual.
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■	 Don’t	think	that	the	sign	of	a	coefficient	is	special. Sometimes our primary interest in 
a predictor is whether it has a positive or negative association with y. As we have seen, 
though, the sign of the coefficient also depends on the other predictors in the model. 
Don’t look at the sign in isolation and conclude that “the direction of the relationship 
is positive (or negative).” Just like the value of the coefficient, the sign is about the 
relationship after allowing for the linear effects of the other predictors. The sign of a 
variable can change depending on which other predictors are in or out of the model. For 
example, in the regression model for infant mortality, the coefficient of HS Drop% was 
negative and its P-value was fairly small, but the simple association between Dropout 
Rate and Infant Mortality is positive. (Check the plot matrix.)

■	 If	a	coefficient’s t-statistic	is	not	significant,	don’t	interpret	it	at	all. You can’t be sure 
that the value of the corresponding parameter in the underlying regression model isn’t 
really zero.

■	 Don’t	fit	a	linear	regression	to	data	that	aren’t	straight. This is the most fundamental 
regression assumption. If the relationship between y and the x’s isn’t approximately 
linear, there’s no sense in fitting a linear model to it. What we mean by “linear” is a 
model of the form we have been writing for the regression. When we have two pre-
dictors, this is the equation of a plane, which is linear in the sense of being flat in all 
directions. With more predictors, the geometry is harder to visualize, but the simple 
structure of the model is consistent; the predicted values change consistently with equal 
size changes in any predictor.

 Usually we’re satisfied when plots of y against each of the x’s are straight enough. 
We’ll also check a scatterplot of the residuals against the predicted values for signs of 
nonlinearity.

■	 Watch	out	for	the	plot	thickening. The estimate of the error standard deviation shows up 
in all the inference formulas. But that estimate assumes that the error standard deviation 
is the same throughout the range of the x’s so that we can combine (pool, actually) all 
the residuals when we estimate it. If se changes with any x, these estimates won’t make 
sense. The most common check is a plot of the residuals against the predicted values. If 
plots of residuals against several of the predictors all show a thickening, and especially 
if they also show a bend, then consider re-expressing y. If the scatterplot against only 
one predictor shows thickening, consider re-expressing that predictor.

■	 Make	sure	the	errors	are	nearly	Normal. All of our inferences require that the true 
errors be modeled well by a Normal model. Check the histogram and Normal 
probability plot of the residuals to see whether this assumption looks reasonable.

■	 Watch	out	for	high-influence	points	and	outliers. We always have to be on the lookout 
for a few points that have undue influence on our model, and regression is certainly no 
exception. Partial regression plots are a good place to look for influential points and to 
understand how they affect each of the coefficients.

WHat ElSE Can Go WronG?

We would never consider a regression analysis without first making scatterplots. The 
 aspects of scatterplots that we always look for—their direction, form, and strength—relate 
directly to regression, and we assess the nearly normal condition by examining the shape of 
a  residual histogram or with a normal probability plot.

ConnECtIonS
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Regression inference is connected to just about every inference method we have 
seen for measured data. The assumption that the spread of data about the line is constant 
is essentially the same as the assumption of equal variances required for the pooled-t 
 methods. Our use of all the residuals together to estimate their standard deviation is a 
form of pooling.

Of course, the ANOVA table in the regression output connects to our consideration 
of ANOVA in Chapter 24. This, too, is not coincidental. Multiple Regression, ANOVA, 
pooled t-tests, and inference for means are all part of a more general statistical model 
known as the General Linear Model (often just called the GLM).

What Have We learned?
learning objectives
Know how to perform a multiple regression, using the technology of your choice.

■	Technologies differ, but most produce similar-looking tables to hold the regression
results. Know how to find the values you need in the output generated by the technology 
you are using.

Understand how to interpret a multiple regression model.
■	The meaning of a multiple regression coefficient depends on the other variables in the 

model. In particular, it is the relationship of y to the associated x after removing the 
linear effects of the other x’s.

Be sure to check the Assumptions and Conditions before interpreting a multiple regression 
model.

■	The Linearity Assumption asserts that the form of the multiple regression model is 
appropriate. We check it by examining scatterplots. If the plots appear to be linear, we 
can fit a multiple regression model.

■	The Independence Assumption requires that the errors made by the model in fitting 
the data be mutually independent. Data that arise from random samples or randomized 
experiments usually satisfy this assumption.

■	The Equal Variance Assumption states that the variability around the multiple regres-
sion model should be the same everywhere. We usually check the Equal Spread Con-
dition by plotting the residuals against the predicted values. This assumption is needed 
so that we can pool the residuals to estimate their standard deviation, which we will 
need for inferences about the regression coefficients.

■	The Normality Assumption says that the model’s errors should follow a Normal 
model. We check the Nearly Normal Condition with a histogram or normal probabil-
ity plot of the residuals. We need this assumption to use Student’s t models for infer-
ence, but for larger sample sizes, it is less important.

Know how to state and test hypotheses about the multiple regression coefficients.
■	The standard hypothesis test for each coefficient is

 H0: bj = 0 vs.
 HA: bj � 0

■	We test these hypotheses by referring the test statistic

bj - 0

SE(bj)
 to the Student’s t distribution on n - k - 1 degrees of freedom, where k is the 

 number of coefficients estimated in the multiple regression.

Copyright © 2014 Pearson Education, Inc. 
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Interpret other associated statistics generated by a multiple regression
■	R2 is the fraction of the variation in y accounted for by the multiple regression model.
■	Adjusted R2 attempts to adjust for the number of coefficients estimated.
■	The F -statistic tests the overall hypothesis that the regression model is of no more 

value than simply modeling y with its mean.
■	The standard deviation of the residuals,

se = D ae2

n - k - 1

provides an idea of how precisely the regression model fits the data.

	 Multiple	regression	  A linear regression with two or more predictors whose coefficients are found to minimize 
the sum of the squared residuals is a least squares linear multiple regression. But it is 
usually just called a multiple regression. When the distinction is needed, a least squares 
linear regression with a single predictor is called a simple regression. The multiple  
regression model is (p. 742)

y = b0 + b1x1 + g + bkxk + e.

	 Least	Squares	  We still fit multiple regression models by choosing the coefficients that make the sum of the 
squared residuals as small as possible. This is called the method of least squares (p. 743).

	 Partial	regression	plot	  The partial regression plot for a specified coefficient is a display that helps in understand-
ing the meaning of that coefficient in a multiple regression. It has a slope equal to the 
coefficient value and shows the influences of each case on that value. Partial regression 
plots display the residuals when y is regressed on the other predictors against the 
residuals when the specified x is regressed on the other predictors (p. 745).

	 ANOVA	table	  The Analysis of Variance table that is ordinarily part of the multiple regression results 
offers an F -test to test the null hypothesis that the overall regression is no improvement 
over just modeling y with its mean:

H0: b1 = b2 = g = bk = 0.

	 	  If this null hypothesis is not rejected, then you should not proceed to test the individual 
 coefficients (p. 750).

	 t-ratios	for	the	coefficients	  The t-ratios for the coefficients can be used to test the null hypotheses that the true value 
of each coefficient is zero against the alternative that it is not (p. 751).

	 Scatterplot	matrix	  A scatterplot matrix displays scatterplots for all pairs of a collection of variables, arranged 
so that all the plots in a row have the same variable displayed on their y-axis and all plots 
in a column have the same variable on their x-axis. Usually, the diagonal holds a display of 
a single variable such as a histogram or Normal probability plot, and identifies the variable 
in its row and column (p. 753).

	 Adjusted	R 2	  An adjustment to the R2 statistic that attempts to allow for the number of predictors in 
the model. It is sometimes used when comparing regression models with different  
numbers of predictors (p. 757).

R2
adj = 1 -

MSResidual

MSTotal

review of terms

Copyright © 2014 Pearson Education, Inc. 

M25_DEVE5278_04_SE_C25.indd   761 9/27/12   6:04 PM



762    part VII  Inference When Variables Are Related

on the Computer REgRESSion	analySiS

All statistics packages make a table of results for a regression. If you can read a package’s regression output table for 
simple regression, then you can read its table for a multiple regression. You’ll want to look at the ANOVA table, and you’ll 
see information for each of the coefficients, not just for a single slope.

Most packages offer to plot residuals against predicted values. Some will also plot residuals against the x’s. With some 
packages you must request plots of the residuals when you request the regression. Others let you find the regression first 
and then analyze the residuals afterward. Either way, your analysis is not complete if you don’t check the residuals with a 
histogram or Normal probability plot and a scatterplot of the residuals against the x’s or the predicted values.

One good way to check assumptions before embarking on a multiple regression analysis is with a scatterplot matrix. 
This is sometimes abbreviated SPLOM in commands.

Multiple regressions are always found with a computer or programmable calculator. Before computers were available,  
a full multiple regression analysis could take months or even years of work.

■	 Select Y- and X-variable icons.
■	 From the Calc menu, choose Regression.
■	 Data Desk displays the regression table.
■	 Select plots of residuals from the Regression table’s 

HyperView menu.

CoMMEntS
You can change the regression by dragging the icon of an-
other variable over either the Y- or an X-variable name in the 
table and dropping it there. You can add a predictor by drag-
ging its icon into that part of the table. The regression will  
recompute automatically.

Data	DESk

■	 From the Analyze menu, select Fit Model.
■	 Specify the response, Y. Assign the predictors, X, 

in the Construct Model Effects dialog box.
■	 Click on Run Model.

CoMMEntS
JMP chooses a regression analysis when the response  
variable is “Continuous.” The predictors can be any  
combination of quantitative or categorical. If you get a  
different analysis, check the variable types.

JMP

■	 In Excel 2003 and earlier, select Data Analysis from 
the Tools menu.

■	 In Excel 2007, select Data Analysis from the Analysis 
Group on the Data Tab.

■	 Select Regression from the Analysis Tools list.
■	 Click the OK button.
■	 Enter the data range holding the Y-variable in the box 

labeled “Y-range.”
■	 Enter the range of cells holding the X-variables in the 

box labeled “X-range.”
■	 Select the New Worksheet Ply option.
■	 Select Residuals options. Click the OK button.

CoMMEntS
The Y and X ranges do not need to be in the same rows 
of the spreadsheet, although they must cover the same 
number of cells. But it is a good idea to arrange your data 
in parallel columns as in a data table. The X-variables must 
be in adjacent columns. No cells in the data range may hold 
nonnumeric values.

Although the dialog offers a Normal probability plot of the 
residuals, the data analysis add-in does not make a correct 
probability plot, so don’t use this option.

ExCEl
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To fit a multiple regression to y with variables x1 and x2:
■	 mylm= lm(y�x1+x2)

To use all variables in a data frame mydata to predict y,
■	 mylm= lm(y�., data=mydata)

As in simple regression
■	 predict(mylm)

produces predictions.

CoMMEntS
With interval=“confidence” or interval=“prediction” the 
function predict() can be used to make predictions (with 
confidence or prediction intervals) in the same way as for 
simple regression.

R

CoMMEntS
You need a special program to compute a multiple regression 
on the TI-83.

ti-83/84	PluS

To compute a multiple regression:
■	 Click on Stat.
■	 Choose Regression » Multiple Linear.
■	 Choose the Y-variable name from the list of columns.
■	 Choose the X-variable names. (After the first one, 

you may need to hold down the ctrl or command key  
to choose more.)

■	 Click on Calculate.

CoMMEntS
Note that before you Calculate you may click on Next 
repeatedly to save the residuals and/or fitted values in  
your data table.

StatCRunCh

■	 Choose Regression from the Analyze menu.
■	 Choose Linear from the Regression submenu.
■	 When the Linear Regression dialog appears, select 

the Y-variable and move it to the dependent target.  
Then move the X-variables to the independent target.

■	 Click the Plots button.

■	 In the Linear Regression Plots dialog, choose to plot 
the *SRESIDs against the *ZPRED values.

■	 Click the Continue button to return to the Linear 
Regression dialog.

■	 Click the OK button to compute the regression.

SPSS

■	 Choose Regression from the Stat menu.
■	 Choose Regression . . . from the Regression submenu.
■	 In the Regression dialog, assign the Y-variable to the 

Response box and assign the X-variables to the  
Predictors box.

■	 Click the Graphs button.

■	 In the Regression-Graphs dialog, select Standardized 
residuals, and check Normal plot of residuals and 
Residuals versus fits.

■	 Click the OK button to return to the Regression dialog.
■	 Click the OK button to compute the regression.

Minitab
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  We want a regression model to predict USGross. Parts of 
the regression output computed in Excel look like this:

Dependent	variable	is	uSgross($)
R-squared	=  47.4%	 R-squared	(adjusted)	=  46.0%
s = 46.41	with	120 - 4 = 116	degrees	of	freedom

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 -22.9898	 25.70	 -0.895	 0.3729
Budget($)	 1.13442	 0.1297	 8.75	 …0.0001
Stars	 24.9724	 5.884	 4.24	 …0.0001
Run	Time	 -0.403296	 0.2513	 -1.60	 0.1113

 a) Write the multiple regression equation.
 b) What is the interpretation of the coefficient of Budget 

in this regression model?

 4. Movie profit again A middle manager at an entertain-
ment company, upon seeing this analysis, concludes 
that the longer you make a movie, the less money it will 
make. He argues that his company’s films should all be 
cut by 30 minutes to improve their gross. Explain the 
flaw in his interpretation of this model.

Section	25.3

 5. Movie profit once more For the movies examined in 
Exercises 3 and 4, here is a scatterplot of USGross vs. 
Budget:
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  What (if anything) does this scatterplot tell us about 
the following Assumptions and Conditions for the 
regression?

 a) Linearity condition
 b) Equal Spread condition
 c) Normality assumption

T

Section	25.1

 1. Real estate assessment A house in the upstate 
New York area from which the chapter data was drawn 
has 2 bedrooms and 1000 square feet of living area. 
Using the multiple regression model found in the chapter,

Price = 20,986.09 - 7483.10 Bedrooms + 93.84 Living Area.

 a) Find the price that this model estimates.
 b) The house just sold for $135,000. Find the residual 

corresponding to this house.
 c) What does that residual say about this transaction?

 2. Chocolate A candy maker surveyed chocolate bars avail-
able in a local supermarket and found the following least 
squares regression model:

Calories = 28.4 + 11.37 Fat(g) + 2.91 Sugar(g).

 a) The hand-crafted chocolate she makes has 15g of fat 
and 20g of sugar. How many calories does the model 
predict for a serving?

 b) In fact, a laboratory test shows that her candy has  
227 calories per serving. Find the residual correspond-
ing to this candy. (Be sure to include the units.)

 c) What does that residual say about her candy?

Section	25.2

 3. Movie profit What can predict how much a motion 
 picture will make? We have data on a number of movies 
that includes the USGross (in $), the Budget ($), the Run 
Time (minutes), and the average number of Stars awarded 
by reviewers. The first several entries in the data table 
look like this:

	
Movie

uSgross	
($M)

budget	
($M)

Run	time	
(minutes)

	
Stars

White	Noise 56.094360 30 101 2
Coach	Carter 67.264877 45 136 3
Elektra 24.409722 65 100 2
Racing	Stripes 49.772522 30 110 3
Assault	on	Precinct	13 20.040895 30 109 3
Are	We	There	Yet? 82.674398 20 	 94 2
Alone	in	the	Dark 	 5.178569 20 	 96 1.5
Indigo 51.100486 25 105 3.5

Exercises

T
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Chapter Exercises

 11. Interpretations A regression performed to predict 
 selling price of houses found the equation

Price = 169,328 + 35.3 Area + 0.718 Lotsize - 6543 Age

  where Price is in dollars, Area is in square feet, Lotsize 
is in square feet, and Age is in years. The R2 is 92%. 
One of the interpretations below is correct. Which is it? 
Explain what’s wrong with the others.

 a) Each year, a house Ages it is worth $6543 less.
 b) Every extra square foot of Area is associated with 

an additional $35.30 in average price, for houses  
with a given Lotsize and Age.

 c) Every dollar in price means Lotsize increases 
0.718 square feet.

 d) This model fits 92% of the data points exactly.

 12. More interpretations A household appliance manufac-
turer wants to analyze the relationship between total sales 
and the company’s three primary means of advertising 
(television, magazines, and radio). All values were in 
millions of dollars. They found the regression equation

Sales = 250 + 6.75 TV + 3.5 Radio + 2.3 Magazines.

  One of the interpretations below is correct. Which is it? 
Explain what’s wrong with the others.

 a) If they did no advertising, their income would be  
$250 million.

 b) Every million dollars spent on radio makes sales  
increase $3.5 million, all other things being equal.

 c) Every million dollars spent on magazines increases 
TV spending $2.3 million.

 d) Sales increase on average about $6.75 million for  
each million spent on TV, after allowing for the  
effects of the other kinds of advertising.

 13. Predicting final exams How well do exams given during 
the semester predict performance on the final? One class 
had three tests during the semester. Computer output of 
the regression gives

Dependent variable is Final
s =  13.46 	 R-Sq	=  77.7% 	 R-Sq(adj)	=  74.1%

Predictor Coeff se(Coeff) t-Ratio P-Value
Intercept	 -6.72	 14.00	 -0.48	 0.636
Test1	 0.2560	 0.2274	 1.13	 0.274
Test2	 0.3912	 0.2198	 1.78	 0.091
Test3	 0.9015	 0.2086	 4.32	 60.0001

analysis of Variance
source DF ss Ms F-Ratio P-Value
Regression	 3	 11961.8	 3987.3	 22.02	 60.0001
Error	 19	 3440.8	 181.1	 	
Total	 22	 15402.6	 	 	

T

 6. Movie profit reconsidered For the movies regression, 
here is a histogram of the residuals. What does it tell us 
about these Assumptions and Conditions?
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 a) Linearity condition
 b) Nearly Normal condition
 c) Equal Spread condition

Section 25.4

 7. Movie profit model tests Regression output for the 
 movies again:

 a) What is the null hypothesis tested for the coefficient  
of Stars in this table?

 b) What is the t-statistic corresponding to this test?
 c) What is the P-value corresponding to this t-statistic?
 d) Complete the hypothesis test. Do you reject the null 

hypothesis?

 8.  More movie profit tests From the regression output of 
Exercise 3,

 a) What is the null hypothesis tested for the coefficient of 
Run Time?

 b) What is the t-statistic corresponding to this test?
 c) Why is this t-statistic negative?
 d) What is the P-value corresponding to this t-statistic?
 e) Complete the hypothesis test. Do you reject the null 

hypothesis?

Section 25.5

 9.  Interpreting R2 In the regression model of Exercise 3,

 a) What is the R2 for this regression? What does it mean?
 b) Why is the “Adjusted R Square” in the table different 

from the “R Square”?

 10. Regression output interpretation Here is another part 
of the regression output for the movies in Exercise 3:

source sum of squares df Mean square F-Ratio
Regression 224995 	 	 3 74998.4 34.8
Residual 249799 116 	 		2153.44

 a) Using the values from the table, show how the value of 
R2 could be computed. Don’t try to do the calculation, 
just show what is computed.

 b) What is the F-statistic value for this regression?
 c) What null hypothesis can you test with it?
 d) Would you reject that null hypothesis?

T

T

T

(continued)
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 a) Write the regression equation.
 b) How much of the variation in home asking prices is 

accounted for by the model?
 c) Explain in context what the coefficient of Square 

Footage means.
 d) The owner of a construction firm, upon seeing this 

model, objects because the model says that the  
number of bathrooms has no effect on the price of  
the home. He says that when he adds another bath-
room, it increases the value. Is it true that the number 
of bathrooms is unrelated to house price? (Hint: 
Do you think bigger houses have more bathrooms?)

 16. More hill races Here is the regression for the women’s 
records for the same Scottish hill races we considered in 
Exercise 14:

Dependent	variable	is	Women’s	record
R-squared	=  97.7%	 R-squared	(adjusted)	=  97.6%
s = 479.5	with	71 - 3 = 68	degrees	of	freedom

Source	 Sum	of	Squares	 df	 Mean	Square	 F-Ratio
Regression	 658112727	 	 2	 329056364	 1431
Residual	 15634430	 68	 229918	

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 - 554.015	 101.7	 - 5.45	 60.0001
Distance	 418.632	 15.89	 26.4	 60.0001
Climb	 0.780568	 0.0531	 14.7	 60.0001

 a) Compare the regression model for the women’s 
records with that found for the men’s records in  
Exercise 14.

Here’s a scatterplot of the residuals for this regression:
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 b) Discuss the residuals and what they say about the 
assumptions and conditions for this regression.

 17. Predicting finals II Here are some diagnostic plots 
for the final exam data from Exercise 13. These were 
generated by a computer package and may look different 
from the plots generated by the packages you use. (In 
particular, note that the axes of the Normal probability 
plot are swapped relative to the plots we’ve made in the 
text. We only care about the pattern of this plot, so it 
shouldn’t affect your interpretation.) Examine these  

T

 a) Write the equation of the regression model.
 b) How much of the variation in final exam scores is 

 accounted for by the regression model?
 c) Explain in context what the coefficient of Test3 

scores means.
 d) A student argues that clearly the first exam doesn’t help 

to predict final performance. She suggests that this exam 
not be given at all. Does Test1 have no effect on the final 
exam score? Can you tell from this model? (Hint: Do 
you think test scores are related to each other?)

 14. Scottish hill races Hill running—races up and down 
hills—has a written history in Scotland dating back to  
the year 1040. Races are held throughout the year at  
different locations around Scotland. A recent compilation 
of information for 71 races (for which full information 
was available and omitting two unusual races) includes 
the Distance (miles), the Climb (elevation gained during 
the run in ft), and the Record Time (seconds). A regression 
to predict the men’s records as of 2000 looks like this:

Dependent	variable	is	Men’s	record
R-squared	=  98.0%	 R-squared	(adjusted)	=  98.0%
s = 369.7	with	71 - 3 = 68	degrees	of	freedom

Source	 Sum	of	Squares	 df	 Mean	Square	 F-Ratio
Regression	 458947098	 	 2	 229473549	 1679
Residual	 9293383	 68	 136667	

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 - 521.995	 78.39	 -6.66	 60.0001
Distance	 351.879	 12.25	 28.7	 60.0001
Climb	 0.643396	 0.0409	 15.7	 60.0001

 a) Write the regression equation. Give a brief report on 
what it says about men’s record times in hill races.

 b) Interpret the value of R2 in this regression.
 c) What does the coefficient of Climb mean in this 

regression?

 15. Home prices Many variables have an impact on 
determining the price of a house. A few of these are  
Size of the house (square feet), Lotsize, and number of 
Bathrooms. Information for a random sample of homes 
for sale in the Statesboro, Georgia, area was obtained 
from the Internet. Regression output modeling the Ask-
ing Price with Square Footage and number of Bathrooms 
gave the following result:

Dependent	Variable	is	asking	Price
s = 67013	 R-Sq	=  71.1%	 R-Sq	(adj)	=  64.6%

Predictor	 Coeff	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 -152037	 85619	 -1.78	 0.110
Baths	 9530	 40826	 0.23	 0.821
Sq	ft	 139.87	 46.67	 3.00	 0.015

analysis	of	Variance
Source	 DF	 SS	 MS	 F-Ratio	 P-Value
Regression	 	 2	 99303550067	 49651775033	 11.06	 0.004
Residual	 	 9	 40416679100	 4490742122	 	
Total	 11	 1.39720E+11	 	 	

T
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 19. Secretary performance The AFL-CIO has undertaken 
a study of 30 secretaries’ yearly salaries (in thousands of 
dollars). The organization wants to predict salaries from 
several other variables.

  The variables considered to be potential predictors of 
 salary are

  X1 =  months of service

  X2 =  years of education

  X3 =  score on standardized test

  X4 =  words per minute (wpm) typing speed

  X5 =  ability to take dictation in words per minute

plots and discuss whether the assumptions and conditions 
for the multiple regression seem reasonable.
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 18. Home prices II Here are some diagnostic plots for the 
home prices data from Exercise 15. These were generated 
by a computer package and may look different from the 
plots generated by the packages you use. (In particular, 
note that the axes of the Normal probability plot are 
swapped relative to the plots we’ve made in the text.  
We only care about the pattern of this plot, so it shouldn’t 
affect your interpretation.) Examine these plots and  
discuss whether the assumptions and conditions for the 
multiple regression seem reasonable.

(continued)
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 21. Body fat, revisited The data set on body fat contains 
15 body measurements on 250 men from 22 to 81 years 
old. Is average %Body Fat related to Weight? Here’s a 
scatterplot:
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  And here’s the simple regression:

Dependent	variable	is	Pct	bF
R-squared	=  38.1%	 R-squared	(adjusted)	=  37.9%
s =  6.538	with	250 - 2 = 248	degrees	of	freedom

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 -14.6931	 2.760	 -5.32	 60.0001
Weight	 0.18937	 0.0153	 12.4	 60.0001

 a) Is the coefficient of %Body Fat on Weight statistically 
distinguishable from 0? (Perform a hypothesis test.)

 b) What does the slope coefficient mean in this 
regression?

We saw before that the slopes of both Waist size and 
Height are statistically significant when entered into a 
multiple regression equation. What happens if we add 
Weight to that regression? Recall that we’ve already 
checked the assumptions and conditions for regression on 
Waist size and Height in the chapter. Here is the output 
from a regression on all three variables:

Dependent	variable	is	Pct	bF
R-squared	=  72.5%	 R-squared	(adjusted)	=  72.2%
s = 4.376	with	250 - 4 = 246	degrees	of	freedom

	 Sum	of	 	 Mean
Source	 Squares	 df	 Square	 F-Ratio
Regression	 12418.7	 	 	 3	 4139.57	 216
Residual	 	 		4710.11	 246	 	 						19.1468	

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 -31.4830	 11.54	 -2.73	 0.0068
Waist	 2.31848	 0.1820	 12.7	 60.0001
Height	 -0.224932	 0.1583	 -1.42	 0.1567
Weight	 -0.100572	 0.0310	 -3.25	 0.0013

 c) Interpret the slope for Weight. How can the coefficient 
for Weight in this model be negative when its coeffi-
cient was positive in the simple regression model?

 d) What does the P-value for Height mean in this regres-
sion? (Perform the hypothesis test.)

T  A multiple regression model with all five variables was 
run on a computer package, resulting in the following 
output:

Variable	 Coefficient	 Std.	Error	 t-Value
Intercept	 9.788	 0.377	 25.960
X1	 0.110	 0.019	 5.178
X2	 0.053	 0.038	 1.369
X3	 0.071	 0.064	 1.119
X4	 0.004	 0.307	 0.013
X5	 0.065	 0.038	 1.734
s = 0.430	 R2 = 0.863	 	

  Assume that the residual plots show no violations of the 
conditions for using a linear regression model.

 a) What is the regression equation?
 b) From this model, what is the predicted Salary (in 

thousands of dollars) of a secretary with 10 years  
(120 months) of experience, 9th grade education  
(9 years of education), a 50 on the standardized test, 
60 wpm typing speed, and the ability to take 30 wpm 
dictation?

 c) Test whether the coefficient for words per minute of 
typing speed (X4) is significantly different from zero 
at a = 0.05.

 d) How might this model be improved?
 e) A correlation of Age with Salary finds r = 0.682, 

and the scatterplot shows a moderately strong positive 
linear association. However, if X6 = Age is added 
to the multiple regression, the estimated coefficient  
of Age turns out to be b6 = -0.154. Explain some 
possible causes for this apparent change of direction  
in the relationship between age and salary.

 20. GPA and SATs A large section of Stat 101 was asked 
to fill out a survey on grade point average and SAT 
scores. A regression was run to find out how well Math 
and Verbal SAT scores could predict academic perfor-
mance as measured by GPA. The regression was run  
on a computer package with the following output:

Response:	gPa
	 Coefficient	 Std	Error	 t-Ratio	 P-Value

Intercept	 0.574968	 0.253874	 2.26	 0.0249
SAT	Verbal	 0.001394	 0.000519	 2.69	 0.0080
SAT	Math	 0.001978	 0.000526	 3.76	 0.0002

 a) What is the regression equation?
 b) From this model, what is the predicted GPA of  

a student with an SAT Verbal score of 500 and an  
SAT Math score of 550?

 c) What else would you want to know about this  
regression before writing a report about the relation-
ship between SAT scores and grade point averages? 
Why would these be important to know?
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 a) Is the slope of %Body Fat on Chest Size statistically 
distinguishable from 0? (Perform a hypothesis test.)

 b) What does the answer in part a mean about the rela-
tionship between %Body Fat and Chest Size?

We saw before that the slopes of both Waist size and 
Height are statistically significant when entered into 
a multiple regression equation. What happens if we add 
Chest Size to that regression? Here is the output from a 
regression on all three variables:

Dependent	variable	is	Pct	bF
R-squared	=  72.2%	 R-squared	(adjusted)	=  71.9%
s = 4.399	with	250 - 4 = 246	degrees	of	freedom

	 Sum	of	 	 Mean
Source	 Squares	 df	 Square	 F-Ratio	 P-Value
Regression	 12368.9	 3	 4122.98	 213	 60.0001
Residual	 4759.87	 246	 19.3491	 	

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 2.07220	 7.802	 0.266	 0.7908
Waist	 2.19939	 0.1675	 13.1	 60.0001
Height	 -0.561058	 0.1094	 -5.13	 60.0001
Chest	Size	 -0.233531	 0.0832	 -2.81	 0.0054

 c) Interpret the coefficient for Chest Size.
 d) Would you consider removing any of the variables 

from this regression model? Why or why not?

 24. Grades The table below shows the five scores from an 
Introductory Statistics course. Find a model for predict-
ing final exam score by trying all possible models with 
two predictor variables. Which model would you choose? 
Be sure to check the conditions for multiple regression.

	
name

	
Final

	
Midterm	1

	
Midterm	2

	
Project

home-	
work

Timothy	F. 117 82 30 10.5 61
Karen	E. 183 96 68 11.3 72
Verena	Z. 124 57 82 11.3 69
Jonathan	A. 177 89 92 10.5 84
Elizabeth	L. 169 88 86 10.6 84
Patrick	M. 164 93 81 10 71
Julia	E. 134 90 83 11.3 79
Thomas	A. 	 98 83 21 11.2 51
Marshall	K. 136 59 62 	 9.1 58
Justin	E. 183 89 57 10.7 79
Alexandra	E. 171 83 86 11.5 78
Christopher	B. 173 95 75 	 8 77
Justin	C. 164 81 66 10.7 66
Miguel	A. 150 86 63 	 8 74
Brian	J. 153 81 86 	 9.2 76
Gregory	J. 149 81 87 	 9.2 75
Kristina	G. 178 98 96 	 9.3 84
Timothy	B. 	 75 50 27 10 20
Jason	C. 159 91 83 10.6 71

T

 22. Breakfast cereals We saw in Chapter 7 that the calo-
rie content of a breakfast cereal is linearly associated 
with its sugar content. Is that the whole story? Here’s 
the output of a regression model that regresses Calo-
ries for each serving on its Protein(g), Fat(g), Fiber(g), 
Carbohydrate(g), and Sugars(g) content.

Dependent	variable	is	Calories
R-squared	=  84.5%	 R-squared	(adjusted)	=  83.4%
s = 7.947	with	77 - 6 = 71	degrees	of	freedom

	 Sum	of	 	 Mean
Source	 Squares	 df	 Square	 F-Ratio
Regression	 24367.5	 	 5	 4873.50	 77.2
Residual	 				4484.45	 71	 	 	 		63.1613	

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 20.2454	 5.984	 3.38	 0.0012
Protein	 	 5.69540	 1.072	 5.32	 60.0001
Fat	 8.35958	 1.033	 8.09	 60.0001
Fiber	 -1.02018	 0.4835	 -2.11	 0.0384
Carbo	 2.93570	 0.2601	 11.3	 60.0001
Sugars	 3.31849	 0.2501	 13.3	 60.0001

  Assuming that the conditions for multiple regression  
are met,

 a) What is the regression equation?
 b) Do you think this model would do a reasonably good 

job at predicting calories? Explain.
 c) To check the conditions, what plots of the data might 

you want to examine?
 d) What does the coefficient of Fat mean in this model?

 23. Body fat again Chest size might be a good predictor of 
body fat. Here’s a scatterplot of %Body Fat vs. Chest 
Size.
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  A regression of %Body Fat on Chest Size gives the fol-
lowing equation:

Dependent	variable	is	Pct	bF
R-squared	=  49.1%	 R-squared	(adjusted)	=  48.9%
s = 5.930	with	250 - 2 = 248	degrees	of	freedom

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 -52.7122	 4.654	 -11.3	 60.0001
Chest	Size	 0.712720	 0.0461	 15.5	 60.0001

T

(continued)

M25_DEVE5278_04_SE_C25.indd   769 9/27/12   6:04 PM



770    part VII  Inference When Variables Are Related

Copyright © 2014 Pearson Education, Inc. 

with three predictor variables by trying all four of the 
possible models.

 a) Which model appears to do the best?
 b) Would you leave all three predictors in this model?
 c) Does this model mean that by changing the levels of 

the predictors in this equation, we could affect life 
expectancy in that state? Explain.

 d) Be sure to check the conditions for multiple regres-
sion. What do you conclude?

	
State	name

	
Murder

hS		
grad

	
income

	
illiteracy

life	
Exp

Alabama 15.1 41.3 3624 2.1 69.05
Alaska 11.3 66.7 6315 1.5 69.31
Arizona 	 7.8 58.1 4530 1.8 70.55
Arkansas 10.1 39.9 3378 1.9 70.66
California 10.3 62.6 5114 1.1 71.71
Colorado 	 6.8 63.9 4884 0.7 72.06
Connecticut 	 3.1 56 5348 1.1 72.48
Delaware 	 6.2 54.6 4809 0.9 70.06
Florida 10.7 52.6 4815 1.3 70.66
Georgia 13.9 40.6 4091 2 68.54
Hawaii 	 6.2 61.9 4963 1.9 73.6
Idaho 	 5.3 59.5 4119 0.6 71.87
Illinois 10.3 52.6 5107 0.9 70.14
Indiana 	 7.1 52.9 4458 0.7 70.88
Iowa 	 2.3 59 4628 0.5 72.56
Kansas 	 4.5 59.9 4669 0.6 72.58
Kentucky 10.6 38.5 3712 1.6 70.1
Louisiana 13.2 42.2 3545 2.8 68.76
Maine 	 2.7 54.7 3694 0.7 70.39
Maryland 	 8.5 52.3 5299 0.9 70.22
Massachusetts 	 3.3 58.5 4755 1.1 71.83
Michigan 11.1 52.8 4751 0.9 70.63
Minnesota 	 2.3 57.6 4675 0.6 72.96
Mississippi 12.5 41 3098 2.4 68.09
Missouri 	 9.3 48.8 4254 0.8 70.69
Montana 	 5 59.2 4347 0.6 70.56
Nebraska 	 2.9 59.3 4508 0.6 72.6
Nevada 11.5 65.2 5149 0.5 69.03
New	Hampshire 	 3.3 57.6 4281 0.7 71.23
New	Jersey 	 5.2 52.5 5237 1.1 70.93
New	Mexico 	 9.7 55.2 3601 2.2 70.32
New	York 10.9 52.7 4903 1.4 70.55
North	Carolina 11.1 38.5 3875 1.8 69.21
North	Dakota 	 1.4 50.3 5087 0.8 72.78
Ohio 	 7.4 53.2 4561 0.8 70.82
Oklahoma 	 6.4 51.6 3983 1.1 71.42
Oregon 	 4.2 60 4660 0.6 72.13
Pennsylvania 	 6.1 50.2 4449 1 70.43
Rhode	Island 	 2.4 46.4 4558 1.3 71.9
South	Carolina 11.6 37.8 3635 2.3 67.96
South	Dakota 	 1.7 53.3 4167 0.5 72.08

	
name

	
Final

	
Midterm	1

	
Midterm	2

	
Project

home-	
work

Whitney	E. 157 87 89 10.5 85
Alexis	P. 158 90 91 11.3 68
Nicholas	T. 171 95 82 10.5 68
Amandeep	S. 173 91 37 10.6 54
Irena	R. 165 93 81 	 9.3 82
Yvon	T. 168 88 66 10.5 82
Sara	M. 186 99 90 	 7.5 77
Annie	P. 157 89 92 10.3 68
Benjamin	S. 177 87 62 10 72
David	W.` 170 92 66 11.5 78
Josef	H. 	 78 62 43 	 9.1 56
Rebecca	S. 191 93 87 11.2 80
Joshua	D. 169 95 93 	 9.1 87
Ian	M. 170 93 65 	 9.5 66
Katharine	A. 172 92 98 10 77
Emily	R. 168 91 95 10.7 83
Brian	M. 179 92 80 11.5 82
Shad	M. 148 61 58 10.5 65
Michael	R. 103 55 65 10.3 51
Israel	M. 144 76 88 	 9.2 67
Iris	J. 155 63 62 	 7.5 67
Mark	G. 141 89 66 	 8 72
Peter	H. 138 91 42 11.5 66
Catherine	R.M. 180 90 85 11.2 78
Christina	M. 120 75 62 	 9.1 72
Enrique	J. 	 86 75 46 10.3 72
Sarah	K. 151 91 65 	 9.3 77
Thomas	J. 149 84 70 	 8 70
Sonya	P. 163 94 92 10.5 81
Michael	B. 153 93 78 10.3 72
Wesley	M. 172 91 58 10.5 66
Mark	R. 165 91 61 10.5 79
Adam	J. 155 89 86 	 9.1 62
Jared	A. 181 98 92 11.2 83
Michael	T. 172 96 51 	 9.1 83
Kathryn	D. 177 95 95 10 87
Nicole	M. 189 98 89 	 7.5 77
Wayne	E. 161 89 79 	 9.5 44
Elizabeth	S. 146 93 89 10.7 73
John	R. 147 74 64 	 9.1 72
Valentin	A. 160 97 96 	 9.1 80
David	T.O. 159 94 90 10.6 88
Marc	I. 101 81 89 	 9.5 62
Samuel	E. 154 94 85 10.5 76
Brooke	S. 183 92 90 	 9.5 86

 25. Fifty states Here is a data set on various measures of the 
50 United States. The Murder rate is per 100,000, HS 
Graduation rate is in %, Income is per capita income in 
dollars, Illiteracy rate is per 1000, and Life Expectancy 
is in years. Find a regression model for Life Expectancy 

T

M25_DEVE5278_04_SE_C25.indd   770 9/27/12   6:04 PM



Chapter 25  Multiple Regression*    771

Copyright © 2014 Pearson Education, Inc. 

Dependent	variable	is	Calories
R-squared	=  99.8%	 R-squared	(adjusted)	=  99.8%
s = 8.51	with	111 - 5 = 106	degrees	of	freedom

	 Sum	of	 	 Mean
Source	 Squares	 df	 Square	 F-Ratio
Regression	 4750462	 4	 1187616	 16394
Residual	 7678.64	 106	 72.4400	

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 -5.826	 2.568	 -2.27	 0.0253
Protein	 3.8814	 0.0991	 39.1	 60.0001
Total	fat	 9.2080	 0.0893	 103	 60.0001
Carbs	 3.9016	 0.0457	 85.3	 60.0001
Na/Serv.	 1.2873	 0.4172	 3.09	 0.0026

 a) Do you think this model would do a good job of pre-
dicting calories for a new BK menu item? Why or why 
not?

 b) The mean of Calories is 453.9 with a standard 
deviation of 234.6. Discuss what the value of s in the 
regression means about how well the model fits the 
data.

 c) Does the R2 value of 99.8% mean that the residuals are 
all actually equal to zero? How can you tell from this 
table?

	
State	name

	
Murder

hS		
grad

	
income

	
illiteracy

life	
Exp

Tennessee 11 41.8 3821 1.7 70.11
Texas 12.2 47.4 4188 2.2 70.9
Utah 	 4.5 67.3 4022 0.6 72.9
Vermont 	 5.5 57.1 3907 0.6 71.64
Virginia 	 9.5 47.8 4701 1.4 70.08
Washington 	 4.3 63.5 4864 0.6 71.72
West	Virginia 	 6.7 41.6 3617 1.4 69.48
Wisconsin 	 3 54.5 4468 0.7 72.48
Wyoming 	 6.9 62.9 4566 0.6 70.29

 26. Breakfast cereals again We saw in Chapter 7 that the 
calorie count of a breakfast cereal is linearly associated 
with its sugar content. Can we predict the calories of a 
serving from its vitamin and mineral content? Here’s a 
multiple regression model of Calories per serving on its 
Sodium (mg), Potassium (mg), and Sugars (g):

Dependent	variable	is	Calories
R-squared	=  38.4%	 R-squared	(adjusted)	=  35.9%
s = 15.60	with	77 - 4 = 73	degrees	of	freedom

	 Sum	of	 	 Square
Source	 Squares	 df	 Mean	 F-Ratio	 P-Value
Regression	 11091.8	 3	 3697.28	 15.2	 60.0001
Residual	 17760.1	 73	 243.289	 	

Variable	 Coefficient	 SE(Coeff)	 t-Ratio	 P-Value
Intercept	 83.0469	 5.198	 16.0	 60.0001
Sodium	 0.05721	 0.0215	 2.67	 0.0094
Potass	 -0.01933	 0.0251	 -0.769	 0.4441
Sugars	 2.38757	 0.4066	 5.87	 60.0001

  Assuming that the conditions for multiple regression  
are met,

 a) What is the regression equation?
 b) Do you think this model would do a reasonably good 

job at predicting calories? Explain.
 c) Would you consider removing any of these predictor 

variables from the model? Why or why not?
 d) To check the conditions, what plots of the data might 

you want to examine?

 27. Burger King 2010 revisited Recall the Burger King 
menu data from Chapter 7. BK’s nutrition sheet lists 
many variables. Here’s a multiple regression to predict 
calories for Burger King foods from Protein content (g), 
Total Fat (g), Carbohydrate (g), and Sodium (mg) per 
serving:

T

T

Just Checking Answers

1.	  77.9% of the variation in Maximum Wind Speed can 
be accounted for by multiple regression on Central 
 Pressure and Year.

2.	  In any given year, hurricanes with a Central Pressure 
that is 1 mb lower can be expected to have, on  
average, winds that are 0.933 kn faster.

3.	  First, the researcher is trying to prove his null 
hypothesis for this coefficient and, as we know, 
statistical inference won’t permit that. Beyond that 
problem, we can’t even be sure we understand the 
relationship of Wind Speed to Year from this analysis. 
For example, both Central Pressure and Wind Speed 
might be changing over time, but their relationship 
might well stay the same during any given year.

✓
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