IS5 in R: Relationships Between Categorical Variables–Contingency Tables (Chapter 3)

Nicholas Horton (nhorton@amherst.edu)

2025-01-20

Table of contents

Introduction and background	1
Chapter 3: Relationships Between Categorical Variables–Contingency Tables	2
Section 3.1: Contingency Tables	2
Section 3.2: Conditional Distributions	5
Section 3.3: Displaying Contingency Tables	8
Section 3.4: Three Categorical Variables	11

Introduction and background

This document is intended to help describe how to undertake analyses introduced as examples in the Fifth Edition of *Intro Stats* (2018) by De Veaux, Velleman, and Bock. This file as well as the associated Quarto reproducible analysis source file used to create it can be found at http://nhorton.people.amherst.edu/is5.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach introductory statistics can be found in the mosaic package vignettes (https://cran.r-project.org/web/packages/mosaic). A paper describing the mosaic approach was published in the *R Journal*: https://journal.r-project.org/archive/2017/RJ-2017-024.

We begin by loading packages that will be required for our analyses.

library(mosaic)
library(tidyverse)

Chapter 3: Relationships Between Categorical Variables–Contingency Tables

Section 3.1: Contingency Tables

```
library(janitor)
OKCupid <-
  read_csv(
    "http://nhorton.people.amherst.edu/is5/data/OKCupid_CatsDogs.csv",
    skip = 1
) |>
  janitor::clean_names()
```

The read_csv() function lists the input variable names by default. These were suppressed using the message: false code chunk option to save space. Here we use the clean_names() function from the janitor package to sanitize the names of the columns (which would otherwise contain special characters or whitespace). You can use the names() function to check the cleaned names. We use skip = 1 because the first line in the original data set is a set of variable labels (e.g., Coll, Col2).

```
names(OKCupid)
```

[1] "cats_dogs_both" "gender" "dr

"drugs_y_n"

"smokes_y_n"

The names() function is an easy way to see what variables are included in a dataset.

glimpse(OKCupid)

The glimpse() function provides more information.

Table 3.1, page 65
tally(~ cats_dogs_both + gender, margin = TRUE, useNA = "no", data = OKCupid)

```
gender
cats_dogs_both
                   F
                         M Total
      Has Both
                 897
                       577
                           1474
      Has cats 3412
                      2388
                            5800
      Has dogs 3431
                      3587 7018
      Total
                7740
                      6552 14292
# Table 3.2
tally(~ cats_dogs_both + gender,
 format = "percent", margin = TRUE, useNA = "no",
  data = OKCupid
)
```

```
gender
```

cats_dogs_both	F	М	Total
Has Both	6.276238	4.037224	10.313462
Has cats	23.873496	16.708648	40.582144
Has dogs	24.006437	25.097957	49.104394
Total	54.156171	45.843829	100.000000
tolly(cota dogg	hoth ~ con	dor	

```
tally(cats_dogs_both ~ gender,
  format = "percent", margin = TRUE, useNA = "no",
  data = OKCupid
)
```

gender cats_dogs_both F M Has Both 11.589147 8.806471 Has cats 44.082687 36.446886 Has dogs 44.328165 54.746642 Total 100.000000 100.000000

Table 3.3

tally(gender ~ cats_dogs_both, format = "percent", margin = TRUE, data = OKCupid)

cats_dogs_both gender Has Both Has cats Has dogs <NA> F 60.85482 58.82759 48.88857 35.87435 M 39.14518 41.17241 51.11143 64.12565 Total 100.00000 100.00000 100.00000

We note that the logical values TRUE and FALSE are all caps in R, but that code chunk options are all lower-case (e.g., message: false).

Example 3.1: Exploring Marginal Distributions

We begin by reading and tallying the data.

```
SuperBowl <-
  read_csv(
    "http://nhorton.people.amherst.edu/is5/data/Watch_the_Super_bowl.csv",
    skip = 1
  )
tally(~ Plan + Sex, data = SuperBowl)</pre>
```

	Sex	
Plan	Female	Male
Commercials	156	81
Game	200	279
Wont Watch	160	132

Example 3.2: Exploring Percentages: Children and First-Class Ticket Holders First?

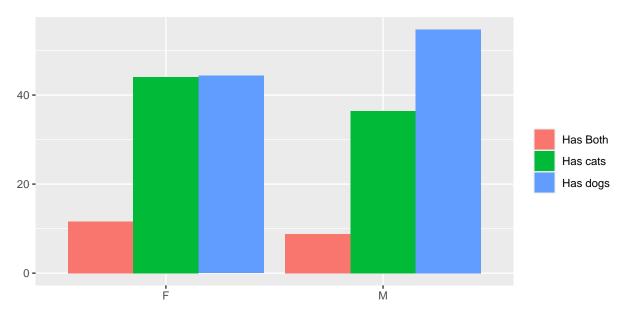
We do the same for the Titanic data.

```
Titanic <- read_csv("http://nhorton.people.amherst.edu/is5/data/Titanic.csv")
tally(~ Class + Survived, format = "percent", margin = TRUE, data = Titanic)</pre>
```

	Survived		
Class	Alive	Dead	Total
1	9.103261	5.570652	14.673913
2	5.389493	7.518116	12.907609
3	8.152174	24.003623	32.155797
Crew	9.601449	30.661232	40.262681
Total	32.246377	67.753623	100.000000

tally(Class ~ Survived, format = "percent", margin = TRUE, data = Titanic)

Survived		
Class	Alive	Dead
1	28.230337	8.221925
2	16.713483	11.096257
3	25.280899	35.427807
Crew	29.775281	45.254011
Total	100.000000	100.000000


tally(Survived ~ Class, format = "percent", margin = TRUE, data = Titanic)

Class Survived 1 2 3 Crew Alive 62.03704 41.75439 25.35211 23.84702 Dead 37.96296 58.24561 74.64789 76.15298 Total 100.00000 100.00000 100.00000

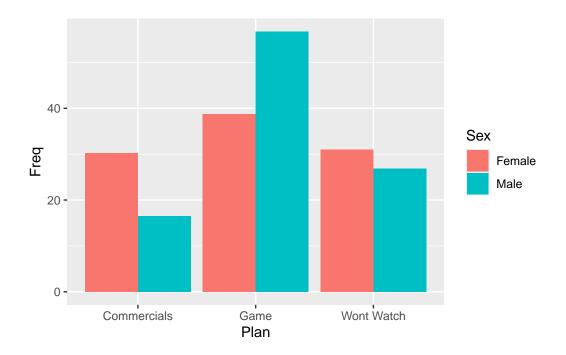
Section 3.2: Conditional Distributions

See displays on 68-69.

Example 3.3: Finding Conditional Distributions: Watching the Super Bowl

We can calculate conditional probabilities from tables using mosaic::tally().

tally(~ Plan + Sex, margin = TRUE, data = SuperBowl)


Sex			
Plan	Female	Male	Total
Commercials	156	81	237
Game	200	279	479
Wont Watch	160	132	292
Total	516	492	1008

tally(Plan ~ Sex, format = "percent", data = SuperBowl)

Sex			
Plan	Female	Male	
Commercials	30.23256	16.46341	
Game	38.75969	56.70732	
Wont Watch	31.00775	26.82927	

Example 3.4: Looking for Associations Between Variables: Still Watching the Super Bowl

Superdata <- tally(Plan ~ Sex, format = "percent", data = SuperBowl) |>
 data.frame()
gf_col(Freq ~ Plan, fill = ~Sex, position = "dodge", data = Superdata)

Examining Contingency Tables

See displays on page 72.

```
FishDiet <- read_csv("http://nhorton.people.amherst.edu/is5/data/Fish_diet.csv", skip = 1) |:
janitor::clean_names()
tally(~ diet_counts + cancer_counts, margins = TRUE, data = FishDiet)</pre>
```

cancer_counts diet_counts No Yes Total Large 507 42 549 Moderate 2769 2978 209 Never 110 14 124 Small 2420 201 2621 Total 5806 466 6272

Random Matters

See display on page 74.

```
Nightmares <-
    read_csv("http://nhorton.people.amherst.edu/is5/data/Nightmares.csv", skip = 1)
glimpse(Nightmares)</pre>
```

Now we can calculate the contingency table.

tally(~ Dream + Side, margins = TRUE, data = Nightmares)

	Side	Э	
Dream	L	R	Total
Nightmare	9	6	15
SweetDreams	13	35	48
Total	22	41	63

Section 3.3: Displaying Contingency Tables

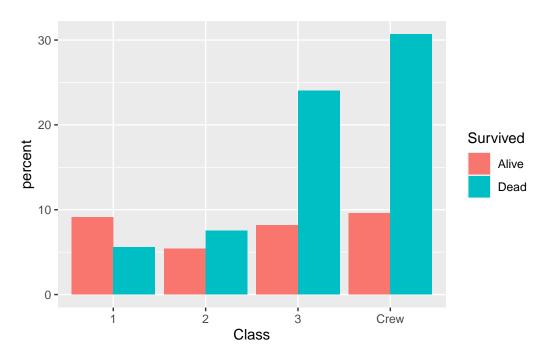
tally(~ Class + Survived, format = "count", data = Titanic)

 Survived

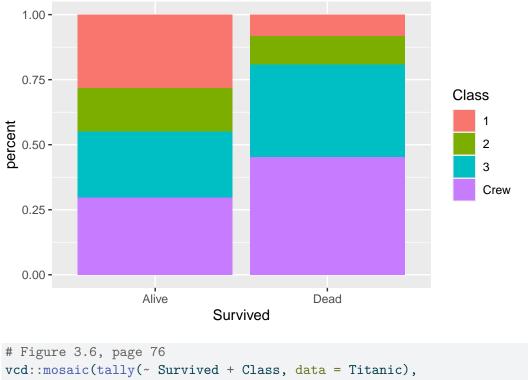
 Class
 Alive
 Dead

 1
 201
 123

 2
 119
 166

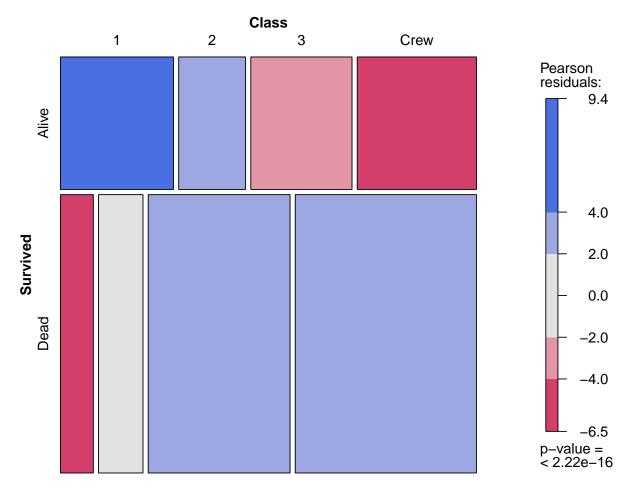

 3
 180
 530

 Crew
 212
 677


tally(~ Class + Survived, format = "percent", data = Titanic)

2	Survived	
Class	Alive	Dead
1	9.103261	5.570652
2	5.389493	7.518116
3	8.152174	24.003623
Crew	9.601449	30.661232

```
# Figure 3.4, page 75
gf_percents(~ Class, fill = ~ Survived, position = position_dodge(), data = Titanic)
```



Figure 3.5
gf_percents(~ Survived, fill = ~ Class, position = "fill", data = Titanic)

- main = "Mosaic plot of Class by Survival",
- shade = TRUE

)

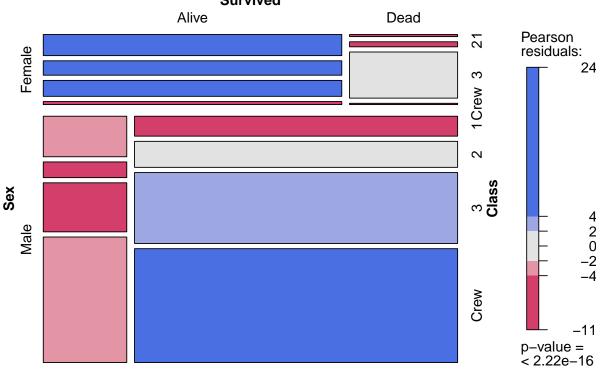
Mosaic plot of Class by Survival

See the mosaic plots on page 77.

Section 3.4: Three Categorical Variables

tally(~ gender + cats_dogs_both + drugs_y_n, format = "percent", data = OKCupid)

, , drugs_y_n = No


cats_dogs_both gender Has Both Has cats Has dogs <NA> F 1.0243064 3.4199156 3.9437466 18.0187845

```
M 0.5922293 2.0819779 3.7769214 30.0719016
, , drugs_y_n = Yes
     cats_dogs_both
        Has Both
                              Has dogs
gender
                   Has cats
                                             <NA>
    F
       0.2085314
                  0.8941828 0.6272626
                                        2.9794972
    M 0.1901807 0.8658225 0.9041923
                                        6.9132342
, , drugs_y_n = NA
     cats_dogs_both
        Has Both
                   Has cats
                              Has dogs
                                             <NA>
gender
       0.2635837
                  1.3779757
                             1.1527618 6.3226732
    F
       0.1801712
                  1.0359842 1.3029044 11.8512587
    М
```

Example 3.7: Looking for Associations Among Three Variables at Once

We can repeat the mosaic plot with three variables.

vcd::mosaic(tally(~ Sex + Survived + Class, data = Titanic), shade = TRUE)

Survived

Example 3.8: Simpson's Paradox: Gender Discrimination?

Here we demonstrate how to generate one of the tables on page 80.

```
# Create a dataframe from the counts
# http://mathemathinking.blogspot.com/2012/06/simpsons-paradox.html
Berk <- bind_rows(
    do(512) * data.frame(admit = TRUE, sex = "M", school = "A"),
    do(825 - 512) * data.frame(admit = FALSE, sex = "M", school = "A"),
    do(89) * data.frame(admit = TRUE, sex = "F", school = "A"),
    do(19) * data.frame(admit = FALSE, sex = "F", school = "A")
)
```

As noted previously, the logical values TRUE and FALSE are all caps in R, but that code chunk options are all lower-case (e.g., message: false).

Here, the do(n) function is used to create n observations with the specified values in data.frame(). The bind_rows() function can then be used to combine the data frames into one.

```
tally(~ sex + admit, data = Berk)
```

admit sex TRUE FALSE F 89 19 M 512 313

tally(admit ~ sex, format = "percent", data = Berk)

sex admit F M TRUE 82.40741 62.06061 FALSE 17.59259 37.93939