
IS5 in R: The Standard Deviation as a Ruler
and the Normal Model (Chapter 5)

Nicholas Horton (nhorton@amherst.edu)

2025-01-23

Table of contents

Introduction and background . 1
Chapter 5: The Standard Deviation as a Ruler and the Normal Model 2

Section 5.1: Using the Standard Deviation to Standardize Values 3
Section 5.2: Shifting and Scaling . 4
Section 5.3: Normal Models . 9
Section 5.4: Working with Normal Percentiles 13
Section 5.5: Normal Probability Plots . 15

Introduction and background

This document is intended to help describe how to undertake analyses introduced as examples
in the Fifth Edition of Intro Stats (2018) by De Veaux, Velleman, and Bock. This file as well
as the associated Quarto reproducible analysis source file used to create it can be found at
http://nhorton.people.amherst.edu/is5.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org),
an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in
the undergraduate curriculum. In particular, we utilize the mosaic package, which was written
to simplify the use of R for introductory statistics courses. A short summary of the R needed
to teach introductory statistics can be found in the mosaic package vignettes (https://cran.r-
project.org/web/packages/mosaic). A paper describing the mosaic approach was published in
the R Journal: https://journal.r-project.org/archive/2017/RJ-2017-024.

We begin by loading packages that will be required for our analyses.

1

library(mosaic)
library(tidyverse)

Chapter 5: The Standard Deviation as a Ruler and the Normal Model

library(mosaic)
library(readr)
library(janitor)
WomenHeptathlon2016 <-
read_csv("http://nhorton.people.amherst.edu/is5/data/Womens_Heptathlon_2016.csv") |>
janitor::clean_names()

By default, read_csv() prints the variable names. These messages were suppressed using
the message: false code chunk option to save space and improve readability. Here we use
the clean_names() function from the janitor package to sanitize the names of the columns
(which would otherwise contain special characters or white space).

page 123
df_stats(~ long_jump, data = WomenHeptathlon2016)

response min Q1 median Q3 max mean sd n missing
1 long_jump 5.51 6.08 6.19 6.31 6.58 6.169655 0.2474655 29 2

df_stats(~ x200m, data = WomenHeptathlon2016)

response min Q1 median Q3 max mean sd n missing
1 x200m 23.26 24.12 24.6 24.99 26.32 24.58207 0.6544975 29 2

with(WomenHeptathlon2016, stem(x200m))

The decimal point is at the |

23 | 3
23 | 589
24 | 011123334
24 | 5667789

2

25 | 00112444
25 |
26 | 3

the `stem()` function doesn't have a `data = ` option
with(WomenHeptathlon2016, stem(long_jump))

The decimal point is 1 digit(s) to the left of the |

54 | 1
56 | 2
58 | 181
60 | 0588002569
62 | 023501145
64 | 38158

Section 5.1: Using the Standard Deviation to Standardize Values

filter(WomenHeptathlon2016, last_name == "Thiam") |>
tibble()

A tibble: 1 x 9
first_name last_name x200m long_jump x800m high_jump x100m_hurdles javelin
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Nafissatou Thiam 25.1 6.58 137. 1.98 13.6 53.1
i 1 more variable: shot_put <dbl>

calculate z-score with mean and sd from df_stats
(6.58 - 6.17) / .247 # long jump

[1] 1.659919

filter(WomenHeptathlon2016, last_name == "Johnson-Thompson") |>
tibble()

3

A tibble: 1 x 9
first_name last_name x200m long_jump x800m high_jump x100m_hurdles javelin
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Katarina Johnson-Thom~ 23.3 6.51 130. 1.98 13.5 36.4
i 1 more variable: shot_put <dbl>

The tibble() function converts an object into a variant of a “data frame” (you may also see
the use of data.frame() for this purpose.)

Note the difference when we pipe the results of filter() into the data.frame() function.

filter(WomenHeptathlon2016, last_name == "Johnson-Thompson") |>
data.frame()

first_name last_name x200m long_jump x800m high_jump x100m_hurdles
1 Katarina Johnson-Thompson 23.26 6.51 130.47 1.98 13.48
javelin shot_put

1 36.36 11.68

Section 5.2: Shifting and Scaling

Shifting to Adjust the Center

We begin by reading in the data.

MenWeight <- read_csv("http://nhorton.people.amherst.edu/is5/data/Mens_Weights.csv") |>
janitor::clean_names()

Figure 5.2, page 125
gf_histogram(~ weight_in_kg, data = MenWeight, binwidth = 10, center = 5) |>
gf_labs(x = "Weight (kg)", y = "# of Mean")

4

0

5

10

15

20

50 75 100 125 150 175
Weight (kg)

of

 M
ea

n

gf_boxplot(~ weight_in_kg, data = MenWeight, xlab = "Weight (kg)")

−0.4

−0.2

0.0

0.2

0.4

50 75 100 125 150
Weight (kg)

As noted previously, a single boxplot is not a good way to display the data (boxplots are better
for comparisons).

5

df_stats(~ weight_in_kg, data = MenWeight)

response min Q1 median Q3 max mean sd n missing
1 weight_in_kg 54.3 67.35 76.85 91.65 161.5 82.35625 22.26881 80 0

Figure 5.3
gf_histogram(~ (weight_in_kg - 74), data = MenWeight, binwidth = 10) |>
gf_labs(x = "Kg Above Recommended Weight", y = "# of Men")

0

5

10

15

20

−25 0 25 50 75 100
Kg Above Recommended Weight

of

 M
en

Rescaling to Adjust the Scale

Let’s review the data from the MenWeight dataset.

df_stats(~ weight_in_kg, data = MenWeight)

response min Q1 median Q3 max mean sd n missing
1 weight_in_kg 54.3 67.35 76.85 91.65 161.5 82.35625 22.26881 80 0

df_stats(~ weight_in_pounds, data = MenWeight)

6

response min Q1 median Q3 max mean sd n
1 weight_in_pounds 119.46 148.17 169.07 201.63 355.3 181.1838 48.99137 80
missing

1 0

MenWeight |>
head() # There are two variables: weight_in_kg and weight_in_pounds.

A tibble: 6 x 2
weight_in_kg weight_in_pounds

<dbl> <dbl>
1 107. 236.
2 95.7 211.
3 68.9 152.
4 60.3 133.
5 60.4 133.
6 69.7 153.

Each observation has a value for each.
nrow(MenWeight)

[1] 80

MenLonger <- MenWeight |>
tidyr::pivot_longer(cols = starts_with("weight"),

values_to = "weight",
names_to = "weighttype")

MenLonger |>
head() # The two variables are weighttype and weight.

A tibble: 6 x 2
weighttype weight
<chr> <dbl>

1 weight_in_kg 107.
2 weight_in_pounds 236.
3 weight_in_kg 95.7
4 weight_in_pounds 211.
5 weight_in_kg 68.9
6 weight_in_pounds 152.

7

weighttype is a categorical variable that is either in kg or pounds
nrow(MenLonger) # Each observation from before is now two rows

[1] 160

Here we use the tidyr::pivot_wider() function to transform the dataset into the needed for-
mat, which can be seen with the head() function. This is an important but more complicated
data wrangling idiom that we will use to reshape datasets.

MenLonger |>
gf_boxplot(weight ~ weighttype) |>
gf_labs(x = "Weight Type", y = "")

100

200

300

weight_in_kg weight_in_pounds
Weight Type

We see the use of GOAL(Y ~ X) as an example of the general modeling language for two
variables in the mosaic package.

Shifting, Scaling, and the z-Scores

8

Section 5.3: Normal Models

The 68-95-99.7 Rule

See display on page 129.

Figure 5.6
1, 2 (1.96), and 3 SD's
xpnorm(c(-3, -1.96, -1, 1, 1.96, 3), mean = 0, sd = 1, verbose = FALSE)

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

de
ns

ity

probability

A:0.0013

B:0.0236

C:0.1337

D:0.6827

E:0.1337

F:0.0236

G:0.0013

[1] 0.001349898 0.024997895 0.158655254 0.841344746 0.975002105 0.998650102

2 (1.96) and 3 SD's
xpnorm(c(-3, -1.96, 1.96, 3), mean = 0, sd = 1, verbose = FALSE)

9

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

de
ns

ity

probability

A:0.0013

B:0.0236

C:0.9500

D:0.0236

E:0.0013

[1] 0.001349898 0.024997895 0.975002105 0.998650102

3 SD's
xpnorm(c(-3, 3), mean = 0, sd = 1, verbose = FALSE)

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

de
ns

ity

probability

A:0.0013

B:0.9973

C:0.0013

[1] 0.001349898 0.998650102

10

Example 5.4: Using the 68-95-99.7 Rule

We begin by reading in the data.

BodyFat <- read_csv("http://nhorton.people.amherst.edu/is5/data/Bodyfat.csv")
gf_histogram(
~ Wrist,
data = BodyFat, binwidth = .5,
center = -.25

) |>
gf_labs(x = "Wrist Circ (cm)", y = "# of Men")

0

20

40

60

16 18 20
Wrist Circ (cm)

of

 M
en

Random Matters

Starts on page 133.

Commute <-
read_csv("http://nhorton.people.amherst.edu/is5/data/Population_Commute_Times.csv") |>
janitor::clean_names()

gf_histogram(~ commute_time, data = Commute, binwidth = 10, center = 5) |>
gf_labs(x = "Commute Times (min)", y = "# of Employees")

11

0

250

500

750

1000

0 50 100 150 200
Commute Times (min)

of

 E
m

pl
oy

ee
s

set.seed(2143) # To ensure we get the same values when we run it multiple times
num_sim <- 10000 # Number of simulations
samp_size <- 100 # Desired sample size

mean(~ commute_time, data = sample(Commute, size = samp_size)) # Mean of one random sample

[1] 45.79

mean(~ commute_time, data = sample(Commute, size = samp_size)) # Mean of another random sample

[1] 44.7

The mosaic::do() command allows us to run a command multiple times, saving the result as
a data frame.

do(2) * mean(~ commute_time, data = sample(Commute, size = samp_size))

mean
1 47.43
2 45.97

12

For the visualization, we use do() 10,000 times
Commute_sample <- do(num_sim) * mean(~commute_time, data = sample(Commute, size = samp_size))

The do() function generates 10,000 samples of size samp_size and for each calculates the
sample mean.

gf_histogram(~ mean, data = Commute_sample) |>
gf_labs(x = "Means of Samples of Size 100", y = "# of Samples")

0

500

1000

35 40 45 50 55 60
Means of Samples of Size 100

of

 S
am

pl
es

Section 5.4: Working with Normal Percentiles

The pnorm() function calculates normal probabilities. The xpnorm() function from the mosaic
package adds a graphical depiction and additional output that may be helpful to new users.

xpnorm(1.8, mean = 0, sd = 1)

If X ~ N(0, 1), then

P(X <= 1.8) = P(Z <= 1.8) = 0.9641

13

P(X > 1.8) = P(Z > 1.8) = 0.03593

z = 1.8

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
x

de
ns

ity

[1] 0.9640697

The qnorm() function finds the inverse of normal probabilities.

xqnorm(0.964, mean = 500, sd = 100) # inverse of pnorm()

If X ~ N(500, 100), then

P(X <= 679.9118) = 0.964

P(X > 679.9118) = 0.036

14

z = 1.8

0.000

0.001

0.002

0.003

0.004

250 500 750
x

de
ns

ity

[1] 679.9118

qnorm(0.964, mean = 0, sd = 1) # what is the z-score?

[1] 1.799118

See examples on pages 136-140.

Section 5.5: Normal Probability Plots

We begin by reading in the data.

Nissan <- read_csv("http://nhorton.people.amherst.edu/is5/data/Nissan.csv")
Figure 5.10, page 141
gf_histogram(~ mpg, data = Nissan, binwidth = 1, center = .5)

15

0

5

10

15

20

15 20 25
mpg

co
un

t

gf_qq(~ mpg, data = Nissan, xlab = "Normal Scores") |>
gf_qqline(linetype = "solid", color = "red")

15

20

25

−2 −1 0 1 2
Normal Scores

y

16

Figure 5.11
gf_histogram(~ weight_in_kg, data = MenWeight, xlab = "Weights", binwidth = 10, center = 5)

0

5

10

15

20

50 75 100 125 150 175
Weights

co
un

t

gf_qq(~ weight_in_kg, data = MenWeight, xlab = "Normal Scores") |>
gf_qqline(linetype = "solid", color = "red")

17

40

80

120

160

−2 −1 0 1 2
Normal Scores

y

18

	Introduction and background
	Chapter 5: The Standard Deviation as a Ruler and the Normal Model
	Section 5.1: Using the Standard Deviation to Standardize Values
	Section 5.2: Shifting and Scaling
	Section 5.3: Normal Models
	Section 5.4: Working with Normal Percentiles
	Section 5.5: Normal Probability Plots

