IS5 in R: Sampling Distribution Models and

Confidence Intervals for Proportions (Chapter
13)

Nicholas Horton (nhorton@amherst.edu)

2025-01-15

Table of contents

Introduction and background L o
Chapter 13: Sampling Distribution Models and Confidence Intervals for Proportions
Section 13.1: The Sampling Distribution Model for a Proportion
Section 13.2: When Does the Normal Model Work? Assumptions and Conditions
Section 13.3: A Confidence Interval for a Proportion
Section 13.4: Interpreting Confidence Intervals: What Does 95% Confidence
Really Mean?
Section 13.5: Margin of Error: Certainty vs. Precision
Section 13.6: Choosing the Sample Size 9

Sy W W N

NelN e}

Introduction and background

This document is intended to help describe how to undertake analyses introduced as examples
in the Fifth Edition of Intro Stats (2018) by De Veaux, Velleman, and Bock. This file as well
as the associated Quarto reproducible analysis source file used to create it can be found at
http://nhorton.people.amherst.edu/is5.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org),
an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in
the undergraduate curriculum. In particular, we utilize the mosaic package, which was written
to simplify the use of R for introductory statistics courses. A short summary of the R needed
to teach introductory statistics can be found in the mosaic package vignettes (https://cran.r-
project.org/web/packages/mosaic). A paper describing the mosaic approach was published in
the R Journal: https://journal.r-project.org/archive/2017/RJ-2017-024.

We begin by loading packages that will be required for our analyses.
library(mosaic)

library(tidyverse)

Chapter 13: Sampling Distribution Models and Confidence Intervals for
Proportions

Babies <- read_csv("http://nhorton.people.amherst.edu/is5/data/Babysamp_98.csv") [|>
janitor::clean_names() |>

mutate(status = ifelse(preemie, "Premature", "Normal"))
glimpse(Babies)
Rows: 200
Columns: 13
$ mom_age <dbl> 35, 22, 35, 23, 23, 26, 25, 32, 41, 22, 25, 24, 20, 19, ~
$ dad_age <dbl> 35, 21, 42, NA, 28, 31, 37, 38, 39, 24, NA, 29, 22, 20, ~
$ mom_educ <dbl> 17, 12, 15, 6, 13, 12, 16, 16, 14, 12, 2, 14, 12, 13, 12~
$ mom_marital <dbl> 1, 1, 1, 1,1, 2, 1,1, 1,2, 2,1, 1,1, 1, 1, 2, 1, 1,~
$ numlive <dbl> 2, 1, 0, 2, 0, 1, 0, 1, O, O, O, O, 1, O, O, O, O, O, O,~
$ dobmm <dbl> 2, 3, 6, 8, 9, 10, 7, 12, 11, 2, 2, 12, 11, 7, 4, 4, 9, ~
$ gestation <dbl> 39, 42, 39, 40, 42, 39, 38, 38, 36, 40, 40, 40, 41, 36, ~
$ sex <chr> "F", "F", "r", "r", "g", "M", "f", "M", "M", "M", "F", "~
$ weight <dbl> 3175, 3884, 3030, 3629, 3481, 3374, 2693, 4338, 2834, 29~
$ prenatalstart <dbl> 1, 2, 2, 1, 2, 4, 1, 1, 2, 1, 1, NA, 2, 8, 2, 2, 1, 2, 3~
$ orig_id <dbl> 1047483, 1468100, 2260016, 3583052, 795674, 3544316, 372~
$ preemie <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
$ status <chr> "Normal", "Normal", "Normal", "Normal", "Normal", "Norma~

By default, read_csv() prints the variable names. These messages have been suppressed using
the message: false code chunk option to save space and improve readability. Here we use
the clean_names() function from the janitor package to sanitize the names of the columns
(which would otherwise contain special characters or whitespace).

The mutate() function is used in conjunction with the ifelse() function to create a new
variable status.

Figure 13.1, page 411
gf_histogram(~ gestation, binwidth = 1, center = .5, fill = ~ status, data = Babies) |[>
gf_labs(x = "Gestation Time (weeks)", y = "Births", fill = "")

50-

40-
Eg30-
= Normal
- P
20 - remature
10-
O -

30 40
Gestation Time (weeks)

Section 13.1: The Sampling Distribution Model for a Proportion

The Normal Model

Section 13.2: When Does the Normal Model Work? Assumptions and Conditions

Random Matters: Does the Normal Model Always Work? Sampling Distributions for
Other Statistics

page 418

BodyFat <- read_csv("http://nhorton.people.amherst.edu/is5/data/Bodyfat.csv") |>
janitor::clean_names()

set.seed(3245) # To ensure we get the same values when we run it multiple times

num_sim <- 1000 # Number of samples

What does do() do?
df _stats(~ weight, data = sample(BodyFat, 10)) # df_stats of one random sample of 10

response min Q1 median Q3 max mean sd n missing
1 weight 140.25 160.5625 170.75 182.5625 262.75 177 33.57496 10 0

df _stats(~ weight, data = sample(BodyFat, 10)) # df_stats of another random sample

response min Q1 median Q3 max mean sd n missing
1 weight 133.25 161.6875 180.375 196.625 218.5 178.2 27.27428 10 0

The do() function in the mosaic package is used in combination with the * operator to run
functions repeatedly. We will use these functions to sample in different ways.

do(2) * df_stats(~ weight, data = sample(BodyFat, 10)) # finds df_stats twice

response min Q1 median Q3 max mean sd n missing
1 weight 145.25 149.7500 167.00 179.7500 195.75 167.575 18.44137 10 0
2 weight 126.50 163.4375 174.75 202.0625 241.25 182.975 36.24156 10 0
.row .index
1 1 1
2 1 2

For the visualization, we need num_sim = 1,000 df_stats
bodyfatsamples <- do(num_sim) * df_stats(~ weight, data = sample(BodyFat, 10))

Here the do() function repeatedly calculates the summary statistics for a random sample of
10 weights.

bodyfatsamples <- bodyfatsamples |[>
janitor::clean_names()

names (bodyfatsamples)
[1] llresponsell "minll llqlll "median" llq3" "maxll
[7] llmean" n sdll lln" "missingll lerW" n indeX"

gf_histogram(~ median, data = bodyfatsamples, binwidth = 3, center = 1.5) [>
gf_labs(x = "Medians", y = "# of Samples")

125-

100 -
(7]
QL 75-
o
=
©
N
%S 50-
Bed
25-
0 -
160 180 200
Medians

gf_histogram(~ sd~2, data = bodyfatsamples) |[>
gf_labs(x = "Variance", y = "# of Samples")

120-

jﬁ 80 -
o
=
v
N
§—
(@]
* 40-

0_

0 500 1000 1500 2000
Variance

gf_histogram(~ min, data = bodyfatsamples, binwidth = 3, center = 1.5) |[>
gf_labs(x = "Minimums", y = "# of Samples")

100~

75~

50-

of Samples

25~

120 140 160 180
Minimums

Section 13.3: A Confidence Interval for a Proportion

Section 13.4: Interpreting Confidence Intervals: What Does 95% Confidence Really
Mean?

First we can replicate the example on pages 423-424.
y <- 1034
n <- 1520

phat <-y / n
phat

[1] 0.6802632

sephat <- sqrt(phat * (1 - phat) / n)
sephat

[1] 0.01196225

phat + c(-2, 2) * sephat # matches interval on the bottom of page 423

[1] 0.6563386 0.7041877

Note that we should actually use 1.96 rather than 2 as the multipliers.

We can also use the prop.test() and binom.test() functions to calculate the interval for
us.

prop.test(y, n, correct = FALSE) # large sample methods

1-sample proportions test without continuity correction

data: y out of n
X-squared = 197.57, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:

0.6563883 0.7032292

sample estimates:

p
0.6802632

binom.test(y, n) # exact methods

data: 7y out of 1520
number of successes = 1034, number of trials = 1520, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:

0.6561572 0.7036706

sample estimates:
probability of success

0.6802632

The intervals are almost exactly the same (not surprising, given how large a sample size we
have).

Next, we can recreate the simulation displayed in Figure 13.9 (page 422)

set.seed(118)
CIsim(n = 100, samples = 20) # We expect 19/20 intervals to cover the true

Interval coverage:

cover
n Low Yes High
100 0.05 0.90 0.05

n =100
0.25- T | T—— T
9
@ 0.00 =
£ 4 - €
17 1
(] —_— —] 1
-0.25- 1 — - e
0 5 10 15 20
sample

mean

We expect 19 of the 20 intervals to cover the true mean, but since only 20 samples are drawn,
there is more variability. Only 18 out of the 20 intervals cover the true mean in this example.

To get the actual plot, the code is more complicated.

set.seed(234)
findingpoints <- function(sampsize) {

CItest <- do(1) * t.test(~preemie, data = sample(Babies, size = sampsize))

Using do() so that CItest can run as a data frame
CItest <- CItest [>
select(lower, upper) |>
mutate (
mean = (upper + lower) / 2,
success = ifelse(lower <= .11 & upper >= .11, TRUE, FALSE)

numsamp <- 20
ConfData <- do(numsamp) * findingpoints(sampsize = 100)

gf_point(mean ~ (1:numsamp), data = ConfData, color = ~ success) [>
gf_segment (upper + lower ~ (1:numsamp) + (1:numsamp), data = ConfData) |>
gf_hline(yintercept = ~ mean(preemie), data = Babies, color = 4) |[>
gf_labs(x = "", y = "Proportion")
0.25-
0.20-
® ®
S
8 ® ®
-g 015 - ° ® Success
)))
& ~o- TRUE
x ® ® ®
9)
0.10- []
® ®
0.05-
1 1 1 1
5 10 15 20

Section 13.5: Margin of Error: Certainty vs. Precision

Section 13.6: Choosing the Sample Size

	Introduction and background
	Chapter 13: Sampling Distribution Models and Confidence Intervals for Proportions
	Section 13.1: The Sampling Distribution Model for a Proportion
	Section 13.2: When Does the Normal Model Work? Assumptions and Conditions
	Section 13.3: A Confidence Interval for a Proportion
	Section 13.4: Interpreting Confidence Intervals: What Does 95% Confidence Really Mean?
	Section 13.5: Margin of Error: Certainty vs. Precision
	Section 13.6: Choosing the Sample Size

