IS5 in R: Comparing Counts (Chapter 19)

Nicholas Horton (nhorton@amherst.edu)

2025-01-23

Table of contents

Introduction and background]
Chapter 19: Comparing Counts	4
Section 19.1: Goodness-of-Fit Tests	4
Section 19.2: Chi-Square Test of Homogeneity	7
Section 19.3: Examining the Residuals	(
Section 19.4: Chi-Square Test of Independence]

Introduction and background

This document is intended to help describe how to undertake analyses introduced as examples in the Fifth Edition of *Intro Stats* (2018) by De Veaux, Velleman, and Bock. This file as well as the associated Quarto reproducible analysis source file used to create it can be found at http://nhorton.people.amherst.edu/is5.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach introductory statistics can be found in the mosaic package vignettes (https://cran.r-project.org/web/packages/mosaic). A paper describing the mosaic approach was published in the R Journal: https://journal.r-project.org/archive/2017/RJ-2017-024.

We begin by loading packages that will be required for our analyses.

```
library(mosaic)
library(tidyverse)
```

Chapter 19: Comparing Counts

Rows: 12 Columns: 4

```
Zodiac <- read_csv("http://nhorton.people.amherst.edu/is5/data/Zodiac.csv")</pre>
```

```
-- Column specification ------
Delimiter: ","
chr (1): Month
dbl (3): Births, Expected, Residual
```

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

By default, read_csv() prints the variable names. These messages can be suppressed using the message: false code chunk option to save space and improve readability.

```
Zodiac |>
select(Month, Births)
```

# .	A tibble: 12	x 2
	Month	Births
	<chr></chr>	<dbl></dbl>
1	Pisces	29
2	Aquarius	24
3	Aries	23
4	Cancer	23
5	Capricorn	22
6	Scorpio	21
7	Taurus	20
8	Leo	20
9	Saggitarius	19
10	Virgo	19
11	Libra	18
12	Gemini	18

Section 19.1: Goodness-of-Fit Tests

Example 19.1: Finding Expected Counts

```
# page 611
BaseballBirths <- read_csv("http://nhorton.people.amherst.edu/is5/data/Ballplayer_births.csv
janitor::clean_names() # doesn't contain national birth %</pre>
```

Here we use the clean_names() function from the janitor package to sanitize the names of the columns (which would otherwise contain special characters or whitespace).

```
natbirth <- c(.08, .07, .08, .08, .08, .09, .09, .09, .09, .09, .09)
BaseballBirths <- # adding a column for national birth %
  bind_cols(BaseballBirths, natbirth)
totaln <- sum(~ ballplayer_count, data = BaseballBirths)
totaln</pre>
```

[1] 1478

```
BaseballBirths <- BaseballBirths |>
  mutate(
    expected = totaln * natbirth,
    observed = ballplayer_count,
    contrib = (observed - expected)^2 / expected
)
sum(~ contrib, data = BaseballBirths)
```

[1] 26.48442

Assumptions and Conditions

Calculations

Chi-Square P-values

```
# Examples of chisq p-values
qchisq(df = 2, p = .1, lower.tail = FALSE)
```

[1] 4.60517

```
qchisq(df = 10, p = .05, lower.tail = FALSE)
```

[1] 18.30704

Example 19.3: Doing a Goodness-of-Fit Test

```
# page 614
df <- nrow(BaseballBirths) - 1
df</pre>
```

[1] 11

```
chisq <- sum(~contrib, data = BaseballBirths)
xpchisq(q = chisq, df = df, lower.tail = FALSE)</pre>
```


[1] 0.005494028

Step-By-Step Example: A Chi-Square Test for Goodness-of-Fit

```
expected <- mean(~ Births, data = Zodiac)
expected</pre>
```

[1] 21.33333

```
gf_col(Births ~ Month, data = Zodiac) |>
   gf_hline(yintercept = expected) |>
   gf_labs(x = "Sign", y = "Count") +
   theme(axis.text.x = element_text(angle = 30, hjust = 1)) # to adjust the angle of the x ax
```



```
# Mechanics
df <- nrow(Zodiac) - 1
df</pre>
```

[1] 11

```
Zodiac <- Zodiac |>
  mutate(chisq = ((Births - Expected)^2) / Expected)
chisq <- sum(~chisq, data = Zodiac)
chisq</pre>
```

[1] 5.09383

xpchisq(q = chisq, df = df, lower.tail = FALSE)

[1] 0.9265374

The Chi-Square Calculation

```
Zodiac |>
  mutate(residsq = Residual^2) |>
  mutate(component = residsq / Expected)
```

```
# A tibble: 12 x 7
  Month
              Births Expected Residual
                                         chisq residsq component
  <chr>
               <dbl>
                                         <dbl>
                                                 <dbl>
                        <dbl>
                                 <dbl>
                                                           <dbl>
1 Pisces
                         21.3
                                 7.67 2.76
                                                58.8
                                                         2.76
                  29
                                                 7.11
2 Aquarius
                  24
                         21.3
                                 2.67 0.333
                                                         0.333
3 Aries
                         21.3
                                                 2.78
                  23
                                 1.67 0.130
                                                         0.130
4 Cancer
                  23
                         21.3
                                 1.67 0.130
                                                 2.78
                                                         0.130
                               0.667 0.0209
5 Capricorn
                         21.3
                                                 0.445
                                                         0.0209
                  22
6 Scorpio
                  21
                         21.3
                                -0.333 0.00520
                                                 0.111
                                                         0.00520
7 Taurus
                         21.3
                                -1.33 0.0833
                                                 1.78
                                                         0.0833
                  20
```

```
1.78
8 Leo
                 20
                       21.3 -1.33 0.0833
                                                    0.0833
9 Saggitarius
                       21.3 -2.33 0.255
                                             5.44
                                                    0.255
                 19
10 Virgo
                 19
                       21.3 -2.33 0.255
                                             5.44
                                                    0.255
11 Libra
                       21.3 -3.33 0.521
                                            11.1
                                                    0.521
                 18
12 Gemini
                       21.3 -3.33 0.521
                 18
                                            11.1
                                                    0.521
```

The Trouble with Goodness-of-Fit Tests: What's the Alternative?

Section 19.2: Chi-Square Test of Homogeneity

```
# Create the data set
Postgrad <- bind_rows(
    do(209) * data.frame(activity = "Employed", school = "Agriculture"),
    do(198) * data.frame(activity = "Employed", school = "Arts & Sciences"),
    do(177) * data.frame(activity = "Employed", school = "Engineering"),
    do(101) * data.frame(activity = "Employed", school = "ILR"),
    do(104) * data.frame(activity = "Grad School", school = "Agriculture"),
    do(171) * data.frame(activity = "Grad School", school = "Arts & Sciences"),
    do(158) * data.frame(activity = "Grad School", school = "Engineering"),
    do(33) * data.frame(activity = "Grad School", school = "ILR"),
    do(135) * data.frame(activity = "Other", school = "Agriculture"),
    do(115) * data.frame(activity = "Other", school = "Arts & Sciences"),
    do(39) * data.frame(activity = "Other", school = "Engineering"),
    do(16) * data.frame(activity = "Other", school = "ILR")
}</pre>
```

```
# Table 19.1, page 618
tally(activity ~ school, data = Postgrad, margins = TRUE)
```

school

```
activity
             Agriculture Arts & Sciences Engineering ILR
 Employed
                      209
                                      198
                                                  177 101
 Grad School
                      104
                                      171
                                                  158 33
 Other
                      135
                                      115
                                                   39 16
 Total
                                                  374 150
                      448
                                      484
```

```
# Table 19.2
tally(activity ~ school, format = "percent", data = Postgrad, margins = TRUE)
```

school

activity	Agriculture	Arts	& Sciences	Engineering	ILR
Employed	46.65179		40.90909	47.32620	67.33333
Grad School	23.21429		35.33058	42.24599	22.00000
Other	30.13393		23.76033	10.42781	10.66667
Total	100.00000		100.00000	100.00000	100.00000

```
# Table 19.3
with(chisq.test(tally(activity ~ school, data = Postgrad, margins = TRUE)), expected)
```

school

activity	Agriculture	Arts &	Sciences	Engineering	ILR
Employed	210.76923		227.7060	175.95467	70.57005
Grad School	143.38462		154.9066	119.70055	48.00824
Other	93.84615		101.3874	78.34478	31.42170
Total	448.00000		484.0000	374.00000	150.00000

Step-By-Step Example: A Chi-Square Test for Homogeneity

We can undertake a chi-square test for homogeneity. First let's display the data.

```
tally(activity ~ school, format = "percent", data = Postgrad) |>
  data.frame() |>
  gf_col(Freq ~ school, fill = ~activity, position = "dodge") |>
  gf_labs(x = "School", y = "Percent", fill = "")
```



```
# Mechanics
tally(activity ~ school, data = Postgrad, margins = TRUE)
```

school

activity	Agriculture	Arts &	Sciences	Engineering	ILR
Employed	209		198	177	101
Grad School	104		171	158	33
Other	135		115	39	16
Total	448		484	374	150

with(chisq.test(tally(activity ~ school, data = Postgrad, margins = TRUE)), expected)

school

activity	Agriculture	Arts &	Sciences	Engineering	ILR
Employed	210.76923		227.7060	175.95467	70.57005
Grad School	143.38462		154.9066	119.70055	48.00824
Other	93.84615		101.3874	78.34478	31.42170
Total	448.00000		484.0000	374.00000	150.00000

with(chisq.test(tally(activity ~ school, data = Postgrad)), statistic)

X-squared 93.65667

[1] 5.154981e-18

Section 19.3: Examining the Residuals

```
# Table 19.4, page 622
with(chisq.test(tally(activity ~ school, data = Postgrad, margins = TRUE)), residuals)

school
activity Agriculture Arts & Sciences Engineering ILR
Employed -0.12186553 -1.96860027 0.07880484 3.62235442
Grad School -3.28908677 1.29304319 3.50061599 -2.16606715
Other 4.24817296 1.35191804 -4.44510568 -2.75117035
Total 0.00000000 0.00000000 0.00000000
```

Example 19.4: Looking at χ^2 , Residuals

```
BaseballBirths |>
  mutate(residuals = (ballplayer_count - expected) / (expected^.5)) |>
  select(month, residuals)
```

```
# A tibble: 12 x 2
  month residuals
   <dbl>
             <dbl>
       1
            1.73
1
2
       2
            1.72
3
       3
           -0.206
4
       4
            0.254
5
       5
            0.714
6
       6
           -0.390
7
           -2.69
       7
8
       8
           2.77
9
       9
          0.0850
          -1.56
10
      10
           -1.22
11
      11
           -0.955
12
      12
```

Section 19.4: Chi-Square Test of Independence

```
Tattoos <- read_csv("http://nhorton.people.amherst.edu/is5/data/Tattoos.csv", skip = 1) |>
    janitor::clean_names() # skip = 1 because first row is "Col1", "Col2"
# Table 19.5, page 623
tally(location ~ has_hepatitis_c, data = Tattoos, margins = TRUE)
```

```
has_hepatitis_c
location No Yes
Commercial Parlor 35 17
Elsewhere 53 8
No Tattoo 491 22
Total 579 47
```

Assumptions and Conditions

Step-By-Step Example: A Chi-Square Test for Independence

We use the mosaic::tally() function to prepare the data for the graphical display.

```
tally(has_hepatitis_c ~ location, format = "percent", data = Tattoos) |>
  data.frame() |>
  filter(has_hepatitis_c == "Yes") |>
```

```
gf_col(Freq ~ location) |>
gf_labs(x = "Tattoo Status", y = "Proportion Infected", title = "Tattoos and Hepatitis C")
```

Tattoos and Hepatitis C


```
# Observed
tally(location ~ has_hepatitis_c, data = Tattoos, margins = TRUE)
```

```
# Expected
with(chisq.test(tally(location ~ has_hepatitis_c, data = Tattoos, margins = TRUE)), expected
```

Warning in chisq.test(tally(location ~ has_hepatitis_c, data = Tattoos, : Chi-squared approximation may be incorrect

has_hepatitis_c location No Yes

```
Commercial Parlor48.095853.904153Elsewhere56.420134.579872No Tattoo474.4840338.515974Total579.0000047.000000
```

We note the warning that several of the expected cell counts are less than 5, which raises concerns about the accuracy of the test.

```
# Mechanics
with(chisq.test(tally(location ~ has_hepatitis_c, data = Tattoos)), statistic)
```

Warning in chisq.test(tally(location ~ has_hepatitis_c, data = Tattoos)): Chi-squared approximation may be incorrect

X-squared 57.91217

[1] 2.674082e-13

Examine the Residuals

```
# Table 19.6, page 627
with(chisq.test(tally(location ~ has_hepatitis_c, data = Tattoos)), residuals)
Warning in chisq.test(tally(location ~ has_hepatitis_c, data = Tattoos)):
Chi-squared approximation may be incorrect
                   has_hepatitis_c
location
                                      Yes
                            No
  Commercial Parlor -1.8883383 6.6278115
  Elsewhere
                   -0.4553290 1.5981431
  No Tattoo
                   0.7582168 -2.6612383
# Table 19.7, page 628
Tattoos <- Tattoos |>
 mutate(tattoo = ifelse(location == "No Tattoo", "None", "Tattoo"))
tally(tattoo ~ has_hepatitis_c, margins = TRUE, data = Tattoos)
```

Chi-Square and Causation

Tattoo 88 25 Total 579 47

tattoo

None

has_hepatitis_c

No Yes 491 22