
✐

✐

“book” — 2014/5/6 — 15:21 — page 327 — #351
✐

✐

✐

✐

✐

✐

12.3. PLOTTING MAPS 327

filename bike

'c:/book/cycle.csv';

proc import datafile=bike out=ride dbms=dlm;

delimiter=',';

getnames=yes;

run;

symbol1 c=black v=dot h=.5 i=none;

axis1 color=white order = (-72.58,-72.461) offset=(0)

value= (c=black) major = (c= black);

axis2 color=white order = (42.315, 42.405) offset=(0)

value= (c=black) major = (c= black);

proc gplot data=ride;

plot latitude * longitude / haxis=axis1 vaxis=axis2

imagestyle=fit iframe = "c:/book/mapback.jpeg";

;

run;

The results are quite similar to the R results in Figure 12.3. For more com-
plex multi-dimensional graphics made with the same data, see http://tinyurl.com/

sasrblog-bikeride and http://tinyurl.com/sasrblog-bikeride-redux.

12.3.3 Choropleth maps

Choropleth maps (8.5.1) are helpful for visualizing geographic data. In this example, we use
data from the built-in R dataset, USArrests, which includes United States arrests in 1973
per 100, 000 inhabitants in various categories by state.

To use the data in SAS, we’ll save it to an external file in R. We’ll use the Stata format
for the external file (see 1.2.6).

> library(foreign)

> USArrests.st =

transform(USArrests, region=tolower(rownames(USArrests)))

> write.dta(USArrests.st, "c:\\book\\USArrests.dta",

convert.factors="string")

Note that the state names are provided only as the row names in the R dataframe. It’s easier
to get them out of R if they are instead stored as a variable. The transform() function
above adds them to the dataset (2.2). The default is to convert string variables to numbers
with Stata labels containing the strings. These are correctly imported to SAS as value labels,
but value labels are not useful for our purposes. The convert.factors="string" option is
used to retain the state names directly instead. Then we can read it into SAS (see 1.1.9).

✐

✐

“book” — 2014/5/6 — 15:21 — page 328 — #352
✐

✐

✐

✐

✐

✐

328 CHAPTER 12. CASE STUDIES

proc import datafile="C:\book\usarrests.dta"

out=usarrests dbms=dta replace;

run;

proc print data=usarrests (obs=5); run;

Urban

Obs Murder Assault Pop Rape region

1 13.2 236 58 21.2 alabama

2 10.0 263 48 44.5 alaska

3 8.1 294 80 31.0 arizona

4 8.8 190 50 19.5 arkansas

5 9.0 276 91 40.6 california
To make the map, we’ll use a built-in US map provided with SAS. This comes with the
two-letter US postal codes identifying the states. To match with the lower-case state names
in the input dataset, we’ll use the statenamel function to convert the postal codes to long
names and the lowcase function (2.2.17) to match the values coming from R.

Then the gmap procedure makes the choropleth.
pattern1 v=s c=grayff;

pattern2 v=s c=grayda;

pattern3 v=s c=grayaa;

pattern4 v=s c=gray68;

pattern5 v=s c=gray22;

data mymap;

set maps.us;

region = lowcase(stnamel(statecode));

run;

proc gmap data=usarrests map=mymap;

id region;

choro murder / levels=5;

run; quit;

Note that the map dataset and the plot dataset remain separate, but are linked by a com-
monly named variable specified in the id statement. The pattern statements change the
colors from the default blue shades to print-friendly grays. SAS maps are stored with vari-
ables x and y describing the boundary points. If longitude and latitude values are available,
a variety of projections can be applied using the gproject procedure.

The results are displayed in Figure 12.4.
In R, we’ll use the ggmap package. Its functions build on the ggplot2 package, which

implements ideas related to the “grammar of graphics” [196]. The package uses a syntax
where specific elements of the plot are added to the final product using special functions
connected by the + symbol. Some additional work is needed to merge the dataset with the
state information (2.3.11) and to sort the resulting dataframe (2.3.10) so that the shape
data for the states is plotted in order.

✐

✐

“book” — 2014/5/6 — 15:21 — page 329 — #353
✐

✐

✐

✐

✐

✐

12.4. DATA SCRAPING AND VISUALIZATION 329

Murder 0.8 - 3.3 3.4 - 5.9

6.0 - 8.5 8.8 - 12.1

12.2 - 17.4

(a) SAS

25

30

35

40

45

50

−120 −100 −80

long

la
t

murder [0.8,3.38] (3.38,6] (6,8.62] (8.62,12.1] (12.1,17.4]

(b) R

Figure 12.4: Choropleth map

> library(ggmap)

> USArrests.st = transform(USArrests.st, murder = cut_number(Murder, 5))

> us_state_map = map_data('state')

> map_data = merge(USArrests.st, us_state_map, by="region")

> map_data = map_data[order(map_data$order),]

> p0 = ggplot(map_data, aes(x=long, y=lat, group=group)) +

geom_polygon(aes(fill = murder)) +

geom_path(colour='black') +

theme(legend.position = "bottom",

panel.background=element_rect(fill="transparent",

color=NA)) +

scale_fill_grey(start=1, end =.1) + coord_map();

> plot(p0)

The scale fill grey() function changes the colors from the default unordered multiple
colors to an ordered and print-friendly black and white (see also scale file brewer). The
ggmap package uses the Mercator projection (see coord map() in the ggplot2 package and
mapproject in the mapproject package).
Note that the binning algorithms used by the SAS gmap procedure and the cut number()

function differ slightly, so that some states are shifted. As always, the choice of groupings
can have an impact on the message conveyed by the graphical display.

12.4 Data scraping and visualization

In the next sections, we automate data harvesting from the web, by “scraping” a URL, then
reading a datafile with two lines per observation, and plotting the results as time series data.
The data being harvested and displayed are the sales ranks from Amazon for the “Cartoon
Guide to Statistics”[54].

