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Part A: Describing missingness
Before we start to account for missing data, we need to first describe it in a clear and comprehensible
manner, then fit a complete case model. We will undertake these preliminary steps using the Health Services
(routine) dataset.

We will focus on predictors of routine discharge (yes/no) for these pediatric inpatients. Key covariates
include: the length of stay (in days, los), age (in years), weekend admission (aweekend), gender (female),
number of medical diagnoses (ndx) and total charges (totchg). The latter variable is partially observed.

We begin by reading in the dataset and keeping only these 6 variables.

. use https://www.amherst.edu/~nhorton/data/routine

. keep routine age aweekend female los ndx totchg

1. Provide a short but comprehensive summary of each of these seven variables. For continuous vari-
ables, include a graphical display of your choice as well as appropriate numerical summaries. For the
categorical variables aweekend and female provide a description of the percentage in each group.

. summarize

Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------

age | 13477 16.32196 2.709657 10 20
aweekend | 13477 .1964087 .3972959 0 1

female | 13477 .5362469 .4987029 0 1
los | 13477 6.459375 11.89629 0 339
ndx | 13477 3.452697 1.994336 1 16

-------------+--------------------------------------------------------
totchg | 13004 9242.434 16714.29 26 459786

routine | 13477 .8645841 .3421799 0 1

. summarize los, detail

length of stay (cleaned)
-------------------------------------------------------------

Percentiles Smallest
1% 0 0
5% 1 0
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10% 1 0 Obs 13477
25% 2 0 Sum of Wgt. 13477

50% 4 Mean 6.459375
Largest Std. Dev. 11.89629

75% 7 218
90% 13 249 Variance 141.5217
95% 19 285 Skewness 9.681498
99% 49 339 Kurtosis 155.1679

. summarize ndx, detail

number of diagnoses on this record
-------------------------------------------------------------

Percentiles Smallest
1% 1 1
5% 1 1

10% 1 1 Obs 13477
25% 2 1 Sum of Wgt. 13477

50% 3 Mean 3.452697
Largest Std. Dev. 1.994336

75% 4 15
90% 6 15 Variance 3.977374
95% 7 15 Skewness 1.182669
99% 10 16 Kurtosis 4.833281

. summarize totchg, detail

total charges (cleaned)
-------------------------------------------------------------

Percentiles Smallest
1% 730 26
5% 1353 30

10% 1821 31 Obs 13004
25% 2991 36 Sum of Wgt. 13004

50% 5218 Mean 9242.434
Largest Std. Dev. 16714.29

75% 9619.5 305223
90% 18078 348279 Variance 2.79e+08
95% 26899 385820 Skewness 9.639567
99% 73272 459786 Kurtosis 151.1259

The mean age is 16.3 years (sd 2.7 years), with a range from 10–20. The mean length of stay was 6.5
days (sd=11.9 days, indicating dramatic skew). The length of stay ranged from 0 to 339 days, with
the 99th percentile at 49 days. The number of diagnoses was also slightly skewed (mean 3.5, median
3, range 1–16, 99th percentile 10). The total charges were dramatically skewed, with a mean of $9,242
and a median of $5,218 and 99th percentile at $73,272.

Approximately 20% of the admissions were during the weekend, 54% of the sample was female, and
86% of the discharges were routine (aka not AMA or transfers or deaths).

Figure 1 displays the histogram of age for this sample, Figure 2 displays the histogram of length of
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Figure 1: Histogram of age (in years)

. histogram age
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Figure 2: Histogram of length of stay (in days, pruned to include only those < 60)
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(bin=41, start=0, width=1.4390244)

0
.0

5
.1

.1
5

D
e
n
s
it
y

0 20 40 60
length of stay (cleaned)

3



Figure 3: Histogram of number of medical diagnoses

. histogram ndx

(bin=41, start=1, width=.36585366)
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stay in the hospital while Figure 3 displays the histogram of number of medical diagnoses. Finally,
Figure 4 displays the histogram of total charges.
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Figure 4: Histogram of total charges (less than 99th percentile value of $73,272)

. histogram totchg if totchg < 73272
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2. The total charges (totchg) are dramatically skewed (no excuses offered for the state of the United
States health care system). Create a new variable called ltotchg which is the log base 10 of the
total charge variable (hint: see the log10() function). Describe the shape, center and spread of the
transformed variable as well as generating a histogram with superimposed normal density.

. gen ltotchg = log10(totchg)

. summarize ltotchg

(473 missing values generated)

Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------

ltotchg | 13004 3.740443 .4088494 1.414973 5.662556

The transformed total charge variable has a mean of 3.7 (less than $10,000 since log10(10000)=4), sd
of 0.4 and shape that is approximately normal. Figure 5 displays the histogram of log total charges
with superimposed normal density. Note that the distribution of predictors of a logistic (or linear)
regression are not required to be normally distributed, but transforming our model may clarify the
form of the associations with routine discharge.

Figure 5: Histogram of log total charges

. histogram ltotchg, normal

(bin=41, start=1.4149734, width=.10359957)
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3. Fit and interpret the regression coefficients for the complete case model: logistic routine age
aweekend female los ndx ltotchg.

. logistic routine age aweekend female los ndx ltotchg

Logistic regression Number of obs = 13004
LR chi2(6) = 175.46
Prob > chi2 = 0.0000

Log likelihood = -5085.8101 Pseudo R2 = 0.0170

------------------------------------------------------------------------------
routine | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
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-------------+----------------------------------------------------------------
age | .9597191 .0094862 -4.16 0.000 .9413054 .978493

aweekend | 1.054727 .0689272 0.82 0.415 .927926 1.198855
female | 1.279471 .066214 4.76 0.000 1.156059 1.416059

los | .9874725 .00206 -6.04 0.000 .9834432 .9915184
ndx | .8867657 .0106406 -10.02 0.000 .8661538 .9078682

ltotchg | 1.251245 .091979 3.05 0.002 1.083354 1.445154
_cons | 7.93592 2.533765 6.49 0.000 4.244507 14.83772

------------------------------------------------------------------------------

Older age (p < 0.001) is statistically significantly associated with higher probability of routine discharge
(OR=0.96, 95% CI=0.94 to 0.98), as is gender (p < 0.001), shorter length of stay (p < 0.001), fewer
diagnoses (p < 0.001) and increased log total charges (p = 0.002). After controlling for these other
factors, weekend admission was not statistically significant (OR=1.05, 95% CI=0.93 to 1.20).

4. Save the results from the logistic regression using the command:

. estimates store cc

5. Generate an indicator of missingness for ltotchg (hint: the command misstable summarize, generate(miss_)
will generate a new variable miss_ltotchg which is set to 1 for observations missing log of total charges,
and 0 for those that are fully observed.

. drop totchg

. misstable summarize, generate(miss_)

Obs<.
+------------------------------

| | Unique
Variable | Obs=. Obs>. Obs<. | values Min Max

-------------+--------------------------------+------------------------------
ltotchg | 473 13,004 | >500 1.414973 5.662556

-----------------------------------------------------------------------------

. describe miss_*

storage display value
variable name type format label variable label
-------------------------------------------------------------------------------
miss_ltotchg byte %8.0g (ltotchg>=.)

6. What variables are associated with missingness? (Hint: fit a logistic regression model predicting the
outcome miss_ltotchg).

. logistic miss_ltotchg routine age aweekend female los ndx

Logistic regression Number of obs = 13477
LR chi2(6) = 23.03
Prob > chi2 = 0.0008

Log likelihood = -2037.469 Pseudo R2 = 0.0056

------------------------------------------------------------------------------
miss_ltotchg | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

7



routine | 1.178531 .1727279 1.12 0.262 .8842744 1.570705
age | .9720152 .0169578 -1.63 0.104 .9393404 1.005827

aweekend | .8585185 .1057357 -1.24 0.215 .6743962 1.092909
female | .9914006 .0936312 -0.09 0.927 .8238703 1.192998

los | .969689 .0084456 -3.53 0.000 .9532764 .9863842
ndx | 1.023069 .0242752 0.96 0.336 .9765799 1.071771

_cons | .0564077 .0186651 -8.69 0.000 .0294903 .1078941
------------------------------------------------------------------------------

. di 1 - .969689

.030311

We observe that little is predictive of missing the total charges: only length of stay is statistically
significant (p < 0.001). We predict that for every additional day of stay, the odds of observing the
total charges decreases by 100.00− 96.97 = 3.03% (95% CI from 1.4% to 4.7%)

We can also try to assess what is predictive of log of total charges through a linear regression model
among the complete cases:

. regress ltotchg routine age aweekend female los ndx

Source | SS df MS Number of obs = 13004
-------------+------------------------------ F( 6, 12997) = 991.93

Model | 682.692007 6 113.782001 Prob > F = 0.0000
Residual | 1490.86089 12997 .114708078 R-squared = 0.3141

-------------+------------------------------ Adj R-squared = 0.3138
Total | 2173.5529 13003 .167157802 Root MSE = .33869

------------------------------------------------------------------------------
ltotchg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
routine | .0321034 .0087223 3.68 0.000 .0150065 .0492003

age | -.0065459 .0011173 -5.86 0.000 -.008736 -.0043558
aweekend | .0033279 .0075108 0.44 0.658 -.0113944 .0180502

female | -.0291525 .005978 -4.88 0.000 -.0408702 -.0174347
los | .0184093 .0002494 73.83 0.000 .0179205 .018898
ndx | .0200639 .0015052 13.33 0.000 .0171135 .0230144

_cons | 3.645295 .0208296 175.01 0.000 3.604466 3.686124
------------------------------------------------------------------------------

With the exception of weekend admission (p = 0.66), all of the other variables are statistically significant
predictors of log total charges.

Here I would include all of the variables in the imputation model (and potentially others in the dataset),
though I would not argue if you dropped aweekend from future consideration.

7. Set up Stata to undertake the imputations using the following commands:

. mi set wide

. mi register imputed ltotchg

. mi register regular routine age aweekend female los ndx

. mi describe
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Style: wide
last mi update 30may2014 09:50:09, 0 seconds ago

Obs.: complete 13,004
incomplete 473 (M = 0 imputations)
---------------------
total 13,477

Vars.: imputed: 1; ltotchg(473)

passive: 0

regular: 6; routine age aweekend female los ndx

system: 1; _mi_miss

(there are 2 unregistered variables; _est_cc miss_ltotchg)

8. Fit an imputation model to fill in the missing ltotchg values using the regress command. Generate
25 imputations, and use a random seed value of 1964.

. mi impute regress ltotchg routine age aweekend female los ndx, add(25) rseed(1964)

Univariate imputation Imputations = 25
Linear regression added = 25
Imputed: m=1 through m=25 updated = 0

------------------------------------------------------------------
| Observations per m
|----------------------------------------------

Variable | Complete Incomplete Imputed | Total
-------------------+-----------------------------------+----------

ltotchg | 13004 473 473 | 13477
------------------------------------------------------------------
(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

9. Fit the logistic regression model using these imputed values and store the results.

. mi estimate, post: logistic routine age aweekend female los ndx ltotchg

. estimates store mireg

Multiple-imputation estimates Imputations = 25
Logistic regression Number of obs = 13477

Average RVI = 0.0024
Largest FMI = 0.0167

DF adjustment: Large sample DF: min = 86265.60
avg = 1.39e+10
max = 7.10e+10

Model F test: Equal FMI F( 6, 1.7e+07)= 30.19
Within VCE type: OIM Prob > F = 0.0000

------------------------------------------------------------------------------
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routine | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age | -.0438771 .0097091 -4.52 0.000 -.0629066 -.0248476
aweekend | .0456617 .0642702 0.71 0.477 -.0803056 .171629

female | .2519158 .0509513 4.94 0.000 .1520531 .3517784
los | -.0124888 .0020711 -6.03 0.000 -.0165481 -.0084295
ndx | -.1182045 .0118176 -10.00 0.000 -.1413666 -.0950424

ltotchg | .2260574 .0729831 3.10 0.002 .0830112 .3691036
_cons | 2.105795 .3159207 6.67 0.000 1.486597 2.724992

------------------------------------------------------------------------------

10. Calculate and interpret the fraction of missing information for each of the parameters. The following
Stata code will be helpful:

. matrix list e(fmi_mi)

e(fmi_mi)[1,7]
routine: routine: routine: routine: routine: routine:

age aweekend female los ndx ltotchg
r1 .00004714 .00001838 .00003986 .00517454 .00039635 .01670244

routine:
_cons

r1 .01175051

How do these values relate to the fraction of the sample that are missing total charges?

. di 473/(13004 + 473)

.03509683

The highest fraction of missing information is for the ltotchg variable (value is 0.0167). We note that
this is considerably smaller than the observed proportion of subjects that are missing this variable,
indicating that we are able to recover a considerable amount of information regarding the distribution
among the unobserved from relationships amongst the observed subjects. (Note that this extrapolation
relies directly on the MAR [“missing at random"] assumption).

A related concept is the relative variance increase (RVI), which is also available from the return values
from mi estimate:

. matrix list e(rvi_mi)

e(rvi_mi)[1,7]
routine: routine: routine: routine: routine: routine:

age aweekend female los ndx ltotchg
r1 .00004714 .00001838 .00003987 .00519921 .00039649 .01696257

routine:
_cons

r1 .0118786

With the exception of log total charges (1.7%) and the constant (1.2%), all of the parameter specific
RVI’s are no more than (0.5%).
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11. Compare the distribution of the imputed values from the first imputation for ltotchg to the observed
values using a boxplot:

. graph hbox _1_ltotchg, over(_mi_miss)

1 2 3 4 5 6
_1_ltotchg

1

0

The imputations seem to be less variable in the tails than the observed values (though the middle 50%
have similar center and spread).

12. Replace the imputations with a set of 25 more that use predictive mean matching rather than the
regression method (use a seed of 1965).

. mi impute pmm ltotchg routine age aweekend female los ndx, replace rseed(1965)

. mi estimate, post: logistic routine age aweekend female los ndx ltotchg

. estimates store mipmm

Univariate imputation Imputations = 25
Predictive mean matching added = 0
Imputed: m=1 through m=25 updated = 25

Nearest neighbors = 1

------------------------------------------------------------------
| Observations per m
|----------------------------------------------

Variable | Complete Incomplete Imputed | Total
-------------------+-----------------------------------+----------

ltotchg | 13004 473 473 | 13477
------------------------------------------------------------------
(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Multiple-imputation estimates Imputations = 25
Logistic regression Number of obs = 13477

Average RVI = 0.0040
Largest FMI = 0.0272

DF adjustment: Large sample DF: min = 32496.78
avg = 4.66e+10
max = 3.17e+11

Model F test: Equal FMI F( 6, 6.3e+06)= 30.41
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Within VCE type: OIM Prob > F = 0.0000

------------------------------------------------------------------------------
routine | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age | -.0436202 .0097129 -4.49 0.000 -.0626571 -.0245833

aweekend | .0452641 .0642734 0.70 0.481 -.0807094 .1712376
female | .2529341 .0509615 4.96 0.000 .1530514 .3528169

los | -.0128611 .0020862 -6.16 0.000 -.0169501 -.0087721
ndx | -.1187721 .0118246 -10.04 0.000 -.1419478 -.0955963

ltotchg | .2487348 .0734925 3.38 0.001 .1046868 .3927827
_cons | 2.02127 .317667 6.36 0.000 1.398642 2.643898

------------------------------------------------------------------------------

Note that to specify a different number of donors for the PMM, you would add the kmm() option.

13. Compare the distribution of the imputed values from the first imputation for ltotchg to the observed
values using a boxplot:

. graph hbox _1_ltotchg, over(_mi_miss)
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_1_ltotchg
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The distributions appear to be slightly shifted, with similar variance.

14. Display the estimates for the three models. How do they compare? How do they differ? Which one do
you prefer?

. estimates table cc mireg mipmm, b se

-----------------------------------------------------
Variable | cc mireg mipmm

-------------+---------------------------------------
age | -.04111468 -.04387713 -.04362018

| .00988436 .00970911 .00971287
aweekend | .05328187 .04566175 .04526408

| .06535079 .06427021 .06427338
female | .24644706 .25191577 .25293414

| .05175109 .05095128 .05096153
los | -.01260658 -.01248882 -.01286111

| .00208616 .0020711 .00208624
ndx | -.12017444 -.11820451 -.11877206
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| .01199938 .01181763 .01182458
ltotchg | .22413913 .22605742 .24873478

| .07351 .07298306 .07349247
_cons | 2.0713992 2.1057949 2.02127

| .31927804 .31592067 .31766698
-----------------------------------------------------

legend: b/se

The two imputation methods have very similar results in terms of the parameter estimates and standard
errors. The complete case estimator has slightly different parameter estimates as well as slightly larger
standard errors (though all three methods have similar standard errors for the variable with incomplete
data).

This is not surprising since there was a small fraction of missing values, and little was predictive of
missingness (except length of stay).

We will return to this example later in the course when we consider multivariate imputation models.
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